| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 | #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.##Licensed under the Apache License, Version 2.0 (the "License");#you may not use this file except in compliance with the License.#You may obtain a copy of the License at##    http://www.apache.org/licenses/LICENSE-2.0##Unless required by applicable law or agreed to in writing, software#distributed under the License is distributed on an "AS IS" BASIS,#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.#See the License for the specific language governing permissions and#limitations under the License.import mathimport cv2import numpy as npimport jsonimport sysimport os__all__ = ['EASTProcessTrain']class EASTProcessTrain(object):    def __init__(self,                 image_shape = [512, 512],                 background_ratio = 0.125,                 min_crop_side_ratio = 0.1,                 min_text_size = 10,                 **kwargs):        self.input_size = image_shape[1]        self.random_scale = np.array([0.5, 1, 2.0, 3.0])        self.background_ratio = background_ratio        self.min_crop_side_ratio = min_crop_side_ratio        self.min_text_size = min_text_size    def preprocess(self, im):        input_size = self.input_size        im_shape = im.shape        im_size_min = np.min(im_shape[0:2])        im_size_max = np.max(im_shape[0:2])        im_scale = float(input_size) / float(im_size_max)        im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)        img_mean = [0.485, 0.456, 0.406]        img_std = [0.229, 0.224, 0.225]        # im = im[:, :, ::-1].astype(np.float32)        im = im / 255        im -= img_mean        im /= img_std        new_h, new_w, _ = im.shape        im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)        im_padded[:new_h, :new_w, :] = im        im_padded = im_padded.transpose((2, 0, 1))        im_padded = im_padded[np.newaxis, :]        return im_padded, im_scale    def rotate_im_poly(self, im, text_polys):        """        rotate image with 90 / 180 / 270 degre        """        im_w, im_h = im.shape[1], im.shape[0]        dst_im = im.copy()        dst_polys = []        rand_degree_ratio = np.random.rand()        rand_degree_cnt = 1        if 0.333 < rand_degree_ratio < 0.666:            rand_degree_cnt = 2        elif rand_degree_ratio > 0.666:            rand_degree_cnt = 3        for i in range(rand_degree_cnt):            dst_im = np.rot90(dst_im)        rot_degree = -90 * rand_degree_cnt        rot_angle = rot_degree * math.pi / 180.0        n_poly = text_polys.shape[0]        cx, cy = 0.5 * im_w, 0.5 * im_h        ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]        for i in range(n_poly):            wordBB = text_polys[i]            poly = []            for j in range(4):                sx, sy = wordBB[j][0], wordBB[j][1]                dx = math.cos(rot_angle) * (sx - cx)\                    - math.sin(rot_angle) * (sy - cy) + ncx                dy = math.sin(rot_angle) * (sx - cx)\                    + math.cos(rot_angle) * (sy - cy) + ncy                poly.append([dx, dy])            dst_polys.append(poly)        dst_polys = np.array(dst_polys, dtype=np.float32)        return dst_im, dst_polys    def polygon_area(self, poly):        """        compute area of a polygon        :param poly:        :return:        """        edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),                (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),                (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),                (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]        return np.sum(edge) / 2.    def check_and_validate_polys(self, polys, tags, img_height, img_width):        """        check so that the text poly is in the same direction,        and also filter some invalid polygons        :param polys:        :param tags:        :return:        """        h, w = img_height, img_width        if polys.shape[0] == 0:            return polys        polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)        polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)        validated_polys = []        validated_tags = []        for poly, tag in zip(polys, tags):            p_area = self.polygon_area(poly)            #invalid poly            if abs(p_area) < 1:                continue            if p_area > 0:                #'poly in wrong direction'                if not tag:                    tag = True  #reversed cases should be ignore                poly = poly[(0, 3, 2, 1), :]            validated_polys.append(poly)            validated_tags.append(tag)        return np.array(validated_polys), np.array(validated_tags)    def draw_img_polys(self, img, polys):        if len(img.shape) == 4:            img = np.squeeze(img, axis=0)        if img.shape[0] == 3:            img = img.transpose((1, 2, 0))            img[:, :, 2] += 123.68            img[:, :, 1] += 116.78            img[:, :, 0] += 103.94        cv2.imwrite("tmp.jpg", img)        img = cv2.imread("tmp.jpg")        for box in polys:            box = box.astype(np.int32).reshape((-1, 1, 2))            cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)        import random        ino = random.randint(0, 100)        cv2.imwrite("tmp_%d.jpg" % ino, img)        return    def shrink_poly(self, poly, r):        """        fit a poly inside the origin poly, maybe bugs here...        used for generate the score map        :param poly: the text poly        :param r: r in the paper        :return: the shrinked poly        """        # shrink ratio        R = 0.3        # find the longer pair        dist0 = np.linalg.norm(poly[0] - poly[1])        dist1 = np.linalg.norm(poly[2] - poly[3])        dist2 = np.linalg.norm(poly[0] - poly[3])        dist3 = np.linalg.norm(poly[1] - poly[2])        if dist0 + dist1 > dist2 + dist3:            # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)            ## p0, p1            theta = np.arctan2((poly[1][1] - poly[0][1]),                               (poly[1][0] - poly[0][0]))            poly[0][0] += R * r[0] * np.cos(theta)            poly[0][1] += R * r[0] * np.sin(theta)            poly[1][0] -= R * r[1] * np.cos(theta)            poly[1][1] -= R * r[1] * np.sin(theta)            ## p2, p3            theta = np.arctan2((poly[2][1] - poly[3][1]),                               (poly[2][0] - poly[3][0]))            poly[3][0] += R * r[3] * np.cos(theta)            poly[3][1] += R * r[3] * np.sin(theta)            poly[2][0] -= R * r[2] * np.cos(theta)            poly[2][1] -= R * r[2] * np.sin(theta)            ## p0, p3            theta = np.arctan2((poly[3][0] - poly[0][0]),                               (poly[3][1] - poly[0][1]))            poly[0][0] += R * r[0] * np.sin(theta)            poly[0][1] += R * r[0] * np.cos(theta)            poly[3][0] -= R * r[3] * np.sin(theta)            poly[3][1] -= R * r[3] * np.cos(theta)            ## p1, p2            theta = np.arctan2((poly[2][0] - poly[1][0]),                               (poly[2][1] - poly[1][1]))            poly[1][0] += R * r[1] * np.sin(theta)            poly[1][1] += R * r[1] * np.cos(theta)            poly[2][0] -= R * r[2] * np.sin(theta)            poly[2][1] -= R * r[2] * np.cos(theta)        else:            ## p0, p3            # print poly            theta = np.arctan2((poly[3][0] - poly[0][0]),                               (poly[3][1] - poly[0][1]))            poly[0][0] += R * r[0] * np.sin(theta)            poly[0][1] += R * r[0] * np.cos(theta)            poly[3][0] -= R * r[3] * np.sin(theta)            poly[3][1] -= R * r[3] * np.cos(theta)            ## p1, p2            theta = np.arctan2((poly[2][0] - poly[1][0]),                               (poly[2][1] - poly[1][1]))            poly[1][0] += R * r[1] * np.sin(theta)            poly[1][1] += R * r[1] * np.cos(theta)            poly[2][0] -= R * r[2] * np.sin(theta)            poly[2][1] -= R * r[2] * np.cos(theta)            ## p0, p1            theta = np.arctan2((poly[1][1] - poly[0][1]),                               (poly[1][0] - poly[0][0]))            poly[0][0] += R * r[0] * np.cos(theta)            poly[0][1] += R * r[0] * np.sin(theta)            poly[1][0] -= R * r[1] * np.cos(theta)            poly[1][1] -= R * r[1] * np.sin(theta)            ## p2, p3            theta = np.arctan2((poly[2][1] - poly[3][1]),                               (poly[2][0] - poly[3][0]))            poly[3][0] += R * r[3] * np.cos(theta)            poly[3][1] += R * r[3] * np.sin(theta)            poly[2][0] -= R * r[2] * np.cos(theta)            poly[2][1] -= R * r[2] * np.sin(theta)        return poly    def generate_quad(self, im_size, polys, tags):        """        Generate quadrangle.        """        h, w = im_size        poly_mask = np.zeros((h, w), dtype=np.uint8)        score_map = np.zeros((h, w), dtype=np.uint8)        # (x1, y1, ..., x4, y4, short_edge_norm)        geo_map = np.zeros((h, w, 9), dtype=np.float32)        # mask used during traning, to ignore some hard areas        training_mask = np.ones((h, w), dtype=np.uint8)        for poly_idx, poly_tag in enumerate(zip(polys, tags)):            poly = poly_tag[0]            tag = poly_tag[1]            r = [None, None, None, None]            for i in range(4):                dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])                dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])                r[i] = min(dist1, dist2)            # score map            shrinked_poly = self.shrink_poly(                poly.copy(), r).astype(np.int32)[np.newaxis, :, :]            cv2.fillPoly(score_map, shrinked_poly, 1)            cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)            # if the poly is too small, then ignore it during training            poly_h = min(                np.linalg.norm(poly[0] - poly[3]),                np.linalg.norm(poly[1] - poly[2]))            poly_w = min(                np.linalg.norm(poly[0] - poly[1]),                np.linalg.norm(poly[2] - poly[3]))            if min(poly_h, poly_w) < self.min_text_size:                cv2.fillPoly(training_mask,                             poly.astype(np.int32)[np.newaxis, :, :], 0)            if tag:                cv2.fillPoly(training_mask,                             poly.astype(np.int32)[np.newaxis, :, :], 0)            xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))            # geo map.            y_in_poly = xy_in_poly[:, 0]            x_in_poly = xy_in_poly[:, 1]            poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)            poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)            for pno in range(4):                geo_channel_beg = pno * 2                geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\                    x_in_poly - poly[pno, 0]                geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\                    y_in_poly - poly[pno, 1]            geo_map[y_in_poly, x_in_poly, 8] = \                1.0 / max(min(poly_h, poly_w), 1.0)        return score_map, geo_map, training_mask    def crop_area(self,                  im,                  polys,                  tags,                  crop_background=False,                  max_tries=50):        """        make random crop from the input image        :param im:        :param polys:        :param tags:        :param crop_background:        :param max_tries:        :return:        """        h, w, _ = im.shape        pad_h = h // 10        pad_w = w // 10        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)        for poly in polys:            poly = np.round(poly, decimals=0).astype(np.int32)            minx = np.min(poly[:, 0])            maxx = np.max(poly[:, 0])            w_array[minx + pad_w:maxx + pad_w] = 1            miny = np.min(poly[:, 1])            maxy = np.max(poly[:, 1])            h_array[miny + pad_h:maxy + pad_h] = 1        # ensure the cropped area not across a text        h_axis = np.where(h_array == 0)[0]        w_axis = np.where(w_array == 0)[0]        if len(h_axis) == 0 or len(w_axis) == 0:            return im, polys, tags        for i in range(max_tries):            xx = np.random.choice(w_axis, size=2)            xmin = np.min(xx) - pad_w            xmax = np.max(xx) - pad_w            xmin = np.clip(xmin, 0, w - 1)            xmax = np.clip(xmax, 0, w - 1)            yy = np.random.choice(h_axis, size=2)            ymin = np.min(yy) - pad_h            ymax = np.max(yy) - pad_h            ymin = np.clip(ymin, 0, h - 1)            ymax = np.clip(ymax, 0, h - 1)            if xmax - xmin < self.min_crop_side_ratio * w or \               ymax - ymin < self.min_crop_side_ratio * h:                # area too small                continue            if polys.shape[0] != 0:                poly_axis_in_area = (polys[:, :, 0] >= xmin)\                    & (polys[:, :, 0] <= xmax)\                    & (polys[:, :, 1] >= ymin)\                    & (polys[:, :, 1] <= ymax)                selected_polys = np.where(                    np.sum(poly_axis_in_area, axis=1) == 4)[0]            else:                selected_polys = []            if len(selected_polys) == 0:                # no text in this area                if crop_background:                    im = im[ymin:ymax + 1, xmin:xmax + 1, :]                    polys = []                    tags = []                    return im, polys, tags                else:                    continue            im = im[ymin:ymax + 1, xmin:xmax + 1, :]            polys = polys[selected_polys]            tags = tags[selected_polys]            polys[:, :, 0] -= xmin            polys[:, :, 1] -= ymin            return im, polys, tags        return im, polys, tags    def crop_background_infor(self, im, text_polys, text_tags):        im, text_polys, text_tags = self.crop_area(            im, text_polys, text_tags, crop_background=True)        if len(text_polys) > 0:            return None        # pad and resize image        input_size = self.input_size        im, ratio = self.preprocess(im)        score_map = np.zeros((input_size, input_size), dtype=np.float32)        geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)        training_mask = np.ones((input_size, input_size), dtype=np.float32)        return im, score_map, geo_map, training_mask    def crop_foreground_infor(self, im, text_polys, text_tags):        im, text_polys, text_tags = self.crop_area(            im, text_polys, text_tags, crop_background=False)        if text_polys.shape[0] == 0:            return None        #continue for all ignore case        if np.sum((text_tags * 1.0)) >= text_tags.size:            return None        # pad and resize image        input_size = self.input_size        im, ratio = self.preprocess(im)        text_polys[:, :, 0] *= ratio        text_polys[:, :, 1] *= ratio        _, _, new_h, new_w = im.shape        #         print(im.shape)        #         self.draw_img_polys(im, text_polys)        score_map, geo_map, training_mask = self.generate_quad(            (new_h, new_w), text_polys, text_tags)        return im, score_map, geo_map, training_mask    def __call__(self, data):        im = data['image']        text_polys = data['polys']        text_tags = data['ignore_tags']        if im is None:            return None        if text_polys.shape[0] == 0:            return None        #add rotate cases        if np.random.rand() < 0.5:            im, text_polys = self.rotate_im_poly(im, text_polys)        h, w, _ = im.shape        text_polys, text_tags = self.check_and_validate_polys(text_polys,                                                              text_tags, h, w)        if text_polys.shape[0] == 0:            return None        # random scale this image        rd_scale = np.random.choice(self.random_scale)        im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)        text_polys *= rd_scale        if np.random.rand() < self.background_ratio:            outs = self.crop_background_infor(im, text_polys, text_tags)        else:            outs = self.crop_foreground_infor(im, text_polys, text_tags)        if outs is None:            return None        im, score_map, geo_map, training_mask = outs        score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)        geo_map = np.swapaxes(geo_map, 1, 2)        geo_map = np.swapaxes(geo_map, 1, 0)        geo_map = geo_map[:, ::4, ::4].astype(np.float32)        training_mask = training_mask[np.newaxis, ::4, ::4]        training_mask = training_mask.astype(np.float32)        data['image'] = im[0]        data['score_map'] = score_map        data['geo_map'] = geo_map        data['training_mask'] = training_mask        # print(im.shape, score_map.shape, geo_map.shape, training_mask.shape)        return data
 |