123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # -*- coding:utf-8 -*-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import numpy as np
- import cv2
- np.seterr(divide='ignore', invalid='ignore')
- import pyclipper
- from shapely.geometry import Polygon
- import sys
- import warnings
- warnings.simplefilter("ignore")
- __all__ = ['MakeBorderMap']
- class MakeBorderMap(object):
- def __init__(self,
- shrink_ratio=0.4,
- thresh_min=0.3,
- thresh_max=0.7,
- **kwargs):
- self.shrink_ratio = shrink_ratio
- self.thresh_min = thresh_min
- self.thresh_max = thresh_max
- def __call__(self, data):
- img = data['image']
- text_polys = data['polys']
- ignore_tags = data['ignore_tags']
- canvas = np.zeros(img.shape[:2], dtype=np.float32)
- mask = np.zeros(img.shape[:2], dtype=np.float32)
- for i in range(len(text_polys)):
- if ignore_tags[i]:
- continue
- self.draw_border_map(text_polys[i], canvas, mask=mask)
- canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min
- data['threshold_map'] = canvas
- data['threshold_mask'] = mask
- return data
- def draw_border_map(self, polygon, canvas, mask):
- polygon = np.array(polygon)
- assert polygon.ndim == 2
- assert polygon.shape[1] == 2
- polygon_shape = Polygon(polygon)
- if polygon_shape.area <= 0:
- return
- distance = polygon_shape.area * (
- 1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
- subject = [tuple(l) for l in polygon]
- padding = pyclipper.PyclipperOffset()
- padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
- padded_polygon = np.array(padding.Execute(distance)[0])
- cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
- xmin = padded_polygon[:, 0].min()
- xmax = padded_polygon[:, 0].max()
- ymin = padded_polygon[:, 1].min()
- ymax = padded_polygon[:, 1].max()
- width = xmax - xmin + 1
- height = ymax - ymin + 1
- polygon[:, 0] = polygon[:, 0] - xmin
- polygon[:, 1] = polygon[:, 1] - ymin
- xs = np.broadcast_to(
- np.linspace(
- 0, width - 1, num=width).reshape(1, width), (height, width))
- ys = np.broadcast_to(
- np.linspace(
- 0, height - 1, num=height).reshape(height, 1), (height, width))
- distance_map = np.zeros(
- (polygon.shape[0], height, width), dtype=np.float32)
- for i in range(polygon.shape[0]):
- j = (i + 1) % polygon.shape[0]
- absolute_distance = self._distance(xs, ys, polygon[i], polygon[j])
- distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
- distance_map = distance_map.min(axis=0)
- xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
- xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
- ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
- ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
- canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
- 1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
- xmin_valid - xmin:xmax_valid - xmax + width],
- canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
- def _distance(self, xs, ys, point_1, point_2):
- '''
- compute the distance from point to a line
- ys: coordinates in the first axis
- xs: coordinates in the second axis
- point_1, point_2: (x, y), the end of the line
- '''
- height, width = xs.shape[:2]
- square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - point_1[
- 1])
- square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - point_2[
- 1])
- square_distance = np.square(point_1[0] - point_2[0]) + np.square(
- point_1[1] - point_2[1])
- cosin = (square_distance - square_distance_1 - square_distance_2) / (
- 2 * np.sqrt(square_distance_1 * square_distance_2))
- square_sin = 1 - np.square(cosin)
- square_sin = np.nan_to_num(square_sin)
- result = np.sqrt(square_distance_1 * square_distance_2 * square_sin /
- square_distance)
- result[cosin <
- 0] = np.sqrt(np.fmin(square_distance_1, square_distance_2))[cosin
- < 0]
- # self.extend_line(point_1, point_2, result)
- return result
- def extend_line(self, point_1, point_2, result, shrink_ratio):
- ex_point_1 = (int(
- round(point_1[0] + (point_1[0] - point_2[0]) * (1 + shrink_ratio))),
- int(
- round(point_1[1] + (point_1[1] - point_2[1]) * (
- 1 + shrink_ratio))))
- cv2.line(
- result,
- tuple(ex_point_1),
- tuple(point_1),
- 4096.0,
- 1,
- lineType=cv2.LINE_AA,
- shift=0)
- ex_point_2 = (int(
- round(point_2[0] + (point_2[0] - point_1[0]) * (1 + shrink_ratio))),
- int(
- round(point_2[1] + (point_2[1] - point_1[1]) * (
- 1 + shrink_ratio))))
- cv2.line(
- result,
- tuple(ex_point_2),
- tuple(point_2),
- 4096.0,
- 1,
- lineType=cv2.LINE_AA,
- shift=0)
- return ex_point_1, ex_point_2
|