123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- """
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import sys
- import six
- import cv2
- import numpy as np
- class DecodeImage(object):
- """ decode image """
- def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
- self.img_mode = img_mode
- self.channel_first = channel_first
- def __call__(self, data):
- img = data['image']
- if six.PY2:
- assert type(img) is str and len(
- img) > 0, "invalid input 'img' in DecodeImage"
- else:
- assert type(img) is bytes and len(
- img) > 0, "invalid input 'img' in DecodeImage"
- img = np.frombuffer(img, dtype='uint8')
- img = cv2.imdecode(img, 1)
- if img is None:
- return None
- if self.img_mode == 'GRAY':
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- elif self.img_mode == 'RGB':
- assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
- img = img[:, :, ::-1]
- if self.channel_first:
- img = img.transpose((2, 0, 1))
- data['image'] = img
- return data
- class NormalizeImage(object):
- """ normalize image such as substract mean, divide std
- """
- def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
- if isinstance(scale, str):
- scale = eval(scale)
- self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
- mean = mean if mean is not None else [0.485, 0.456, 0.406]
- std = std if std is not None else [0.229, 0.224, 0.225]
- shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
- self.mean = np.array(mean).reshape(shape).astype('float32')
- self.std = np.array(std).reshape(shape).astype('float32')
- def __call__(self, data):
- img = data['image']
- from PIL import Image
- if isinstance(img, Image.Image):
- img = np.array(img)
- assert isinstance(img,
- np.ndarray), "invalid input 'img' in NormalizeImage"
- data['image'] = (
- img.astype('float32') * self.scale - self.mean) / self.std
- return data
- class ToCHWImage(object):
- """ convert hwc image to chw image
- """
- def __init__(self, **kwargs):
- pass
- def __call__(self, data):
- img = data['image']
- from PIL import Image
- if isinstance(img, Image.Image):
- img = np.array(img)
- data['image'] = img.transpose((2, 0, 1))
- return data
- class KeepKeys(object):
- def __init__(self, keep_keys, **kwargs):
- self.keep_keys = keep_keys
- def __call__(self, data):
- data_list = []
- for key in self.keep_keys:
- data_list.append(data[key])
- return data_list
- class DetResizeForTest(object):
- def __init__(self, **kwargs):
- super(DetResizeForTest, self).__init__()
- self.resize_type = 0
- if 'image_shape' in kwargs:
- self.image_shape = kwargs['image_shape']
- self.resize_type = 1
- elif 'limit_side_len' in kwargs:
- self.limit_side_len = kwargs['limit_side_len']
- self.limit_type = kwargs.get('limit_type', 'min')
- elif 'resize_long' in kwargs:
- self.resize_type = 2
- self.resize_long = kwargs.get('resize_long', 960)
- else:
- self.limit_side_len = 736
- self.limit_type = 'min'
- def __call__(self, data):
- img = data['image']
- src_h, src_w, _ = img.shape
- if self.resize_type == 0:
- # img, shape = self.resize_image_type0(img)
- img, [ratio_h, ratio_w] = self.resize_image_type0(img)
- elif self.resize_type == 2:
- img, [ratio_h, ratio_w] = self.resize_image_type2(img)
- else:
- # img, shape = self.resize_image_type1(img)
- img, [ratio_h, ratio_w] = self.resize_image_type1(img)
- data['image'] = img
- data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
- return data
- def resize_image_type1(self, img):
- resize_h, resize_w = self.image_shape
- ori_h, ori_w = img.shape[:2] # (h, w, c)
- ratio_h = float(resize_h) / ori_h
- ratio_w = float(resize_w) / ori_w
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- # return img, np.array([ori_h, ori_w])
- return img, [ratio_h, ratio_w]
- def resize_image_type0(self, img):
- """
- resize image to a size multiple of 32 which is required by the network
- args:
- img(array): array with shape [h, w, c]
- return(tuple):
- img, (ratio_h, ratio_w)
- """
- limit_side_len = self.limit_side_len
- h, w, _ = img.shape
- # limit the max side
- if self.limit_type == 'max':
- if max(h, w) > limit_side_len:
- if h > w:
- ratio = float(limit_side_len) / h
- else:
- ratio = float(limit_side_len) / w
- else:
- ratio = 1.
- else:
- if min(h, w) < limit_side_len:
- if h < w:
- ratio = float(limit_side_len) / h
- else:
- ratio = float(limit_side_len) / w
- else:
- ratio = 1.
- resize_h = int(h * ratio)
- resize_w = int(w * ratio)
- resize_h = int(round(resize_h / 32) * 32)
- resize_w = int(round(resize_w / 32) * 32)
- try:
- if int(resize_w) <= 0 or int(resize_h) <= 0:
- return None, (None, None)
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- except:
- print(img.shape, resize_w, resize_h)
- sys.exit(0)
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- # return img, np.array([h, w])
- return img, [ratio_h, ratio_w]
- def resize_image_type2(self, img):
- h, w, _ = img.shape
- resize_w = w
- resize_h = h
- # Fix the longer side
- if resize_h > resize_w:
- ratio = float(self.resize_long) / resize_h
- else:
- ratio = float(self.resize_long) / resize_w
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- max_stride = 128
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return img, [ratio_h, ratio_w]
|