123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from .warp_mls import WarpMLS
- def tia_distort(src, segment=4):
- img_h, img_w = src.shape[:2]
- cut = img_w // segment
- thresh = cut // 3
- src_pts = list()
- dst_pts = list()
- src_pts.append([0, 0])
- src_pts.append([img_w, 0])
- src_pts.append([img_w, img_h])
- src_pts.append([0, img_h])
- dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)])
- dst_pts.append(
- [img_w - np.random.randint(thresh), np.random.randint(thresh)])
- dst_pts.append(
- [img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)])
- dst_pts.append(
- [np.random.randint(thresh), img_h - np.random.randint(thresh)])
- half_thresh = thresh * 0.5
- for cut_idx in np.arange(1, segment, 1):
- src_pts.append([cut * cut_idx, 0])
- src_pts.append([cut * cut_idx, img_h])
- dst_pts.append([
- cut * cut_idx + np.random.randint(thresh) - half_thresh,
- np.random.randint(thresh) - half_thresh
- ])
- dst_pts.append([
- cut * cut_idx + np.random.randint(thresh) - half_thresh,
- img_h + np.random.randint(thresh) - half_thresh
- ])
- trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h)
- dst = trans.generate()
- return dst
- def tia_stretch(src, segment=4):
- img_h, img_w = src.shape[:2]
- cut = img_w // segment
- thresh = cut * 4 // 5
- src_pts = list()
- dst_pts = list()
- src_pts.append([0, 0])
- src_pts.append([img_w, 0])
- src_pts.append([img_w, img_h])
- src_pts.append([0, img_h])
- dst_pts.append([0, 0])
- dst_pts.append([img_w, 0])
- dst_pts.append([img_w, img_h])
- dst_pts.append([0, img_h])
- half_thresh = thresh * 0.5
- for cut_idx in np.arange(1, segment, 1):
- move = np.random.randint(thresh) - half_thresh
- src_pts.append([cut * cut_idx, 0])
- src_pts.append([cut * cut_idx, img_h])
- dst_pts.append([cut * cut_idx + move, 0])
- dst_pts.append([cut * cut_idx + move, img_h])
- trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h)
- dst = trans.generate()
- return dst
- def tia_perspective(src):
- img_h, img_w = src.shape[:2]
- thresh = img_h // 2
- src_pts = list()
- dst_pts = list()
- src_pts.append([0, 0])
- src_pts.append([img_w, 0])
- src_pts.append([img_w, img_h])
- src_pts.append([0, img_h])
- dst_pts.append([0, np.random.randint(thresh)])
- dst_pts.append([img_w, np.random.randint(thresh)])
- dst_pts.append([img_w, img_h - np.random.randint(thresh)])
- dst_pts.append([0, img_h - np.random.randint(thresh)])
- trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h)
- dst = trans.generate()
- return dst
|