12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import os
- import random
- from paddle.io import Dataset
- from .imaug import transform, create_operators
- class SimpleDataSet(Dataset):
- def __init__(self, config, mode, logger, seed=None):
- super(SimpleDataSet, self).__init__()
- self.logger = logger
- global_config = config['Global']
- dataset_config = config[mode]['dataset']
- loader_config = config[mode]['loader']
- self.delimiter = dataset_config.get('delimiter', '\t')
- label_file_list = dataset_config.pop('label_file_list')
- data_source_num = len(label_file_list)
- ratio_list = dataset_config.get("ratio_list", [1.0])
- if isinstance(ratio_list, (float, int)):
- ratio_list = [float(ratio_list)] * int(data_source_num)
- assert len(
- ratio_list
- ) == data_source_num, "The length of ratio_list should be the same as the file_list."
- self.data_dir = dataset_config['data_dir']
- self.do_shuffle = loader_config['shuffle']
- self.seed = seed
- logger.info("Initialize indexs of datasets:%s" % label_file_list)
- self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
- self.data_idx_order_list = list(range(len(self.data_lines)))
- if mode.lower() == "train":
- self.shuffle_data_random()
- self.ops = create_operators(dataset_config['transforms'], global_config)
- def get_image_info_list(self, file_list, ratio_list):
- if isinstance(file_list, str):
- file_list = [file_list]
- data_lines = []
- for idx, file in enumerate(file_list):
- with open(file, "rb") as f:
- lines = f.readlines()
- random.seed(self.seed)
- lines = random.sample(lines,
- round(len(lines) * ratio_list[idx]))
- data_lines.extend(lines)
- return data_lines
- def shuffle_data_random(self):
- if self.do_shuffle:
- random.seed(self.seed)
- random.shuffle(self.data_lines)
- return
- def __getitem__(self, idx):
- file_idx = self.data_idx_order_list[idx]
- data_line = self.data_lines[file_idx]
- try:
- data_line = data_line.decode('utf-8')
- substr = data_line.strip("\n").split(self.delimiter)
- file_name = substr[0]
- label = substr[1]
- img_path = os.path.join(self.data_dir, file_name)
- data = {'img_path': img_path, 'label': label}
- if not os.path.exists(img_path):
- raise Exception("{} does not exist!".format(img_path))
- with open(data['img_path'], 'rb') as f:
- img = f.read()
- data['image'] = img
- outs = transform(data, self.ops)
- except Exception as e:
- self.logger.error(
- "When parsing line {}, error happened with msg: {}".format(
- data_line, e))
- outs = None
- if outs is None:
- return self.__getitem__(np.random.randint(self.__len__()))
- return outs
- def __len__(self):
- return len(self.data_idx_order_list)
|