123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- import argparse
- import paddle
- from paddle.jit import to_static
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import init_model
- from ppocr.utils.logging import get_logger
- from tools.program import load_config, merge_config, ArgsParser
- def parse_args():
- parser = argparse.ArgumentParser()
- parser.add_argument("-c", "--config", help="configuration file to use")
- parser.add_argument(
- "-o", "--output_path", type=str, default='./output/infer/')
- return parser.parse_args()
- def main():
- FLAGS = ArgsParser().parse_args()
- config = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- logger = get_logger()
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- config['Global'])
- # build model
- # for rec algorithm
- if hasattr(post_process_class, 'character'):
- char_num = len(getattr(post_process_class, 'character'))
- config['Architecture']["Head"]['out_channels'] = char_num
- model = build_model(config['Architecture'])
- init_model(config, model, logger)
- model.eval()
- save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
- if config['Architecture']['algorithm'] == "SRN":
- other_shape = [
- paddle.static.InputSpec(
- shape=[None, 1, 64, 256], dtype='float32'), [
- paddle.static.InputSpec(
- shape=[None, 256, 1],
- dtype="int64"), paddle.static.InputSpec(
- shape=[None, 25, 1],
- dtype="int64"), paddle.static.InputSpec(
- shape=[None, 8, 25, 25], dtype="int64"),
- paddle.static.InputSpec(
- shape=[None, 8, 25, 25], dtype="int64")
- ]
- ]
- model = to_static(model, input_spec=other_shape)
- else:
- infer_shape = [3, -1, -1]
- if config['Architecture']['model_type'] == "rec":
- infer_shape = [3, 32, -1] # for rec model, H must be 32
- if 'Transform' in config['Architecture'] and config['Architecture'][
- 'Transform'] is not None and config['Architecture'][
- 'Transform']['name'] == 'TPS':
- logger.info(
- 'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
- )
- infer_shape[-1] = 100
- model = to_static(
- model,
- input_spec=[
- paddle.static.InputSpec(
- shape=[None] + infer_shape, dtype='float32')
- ])
- paddle.jit.save(model, save_path)
- logger.info('inference model is saved to {}'.format(save_path))
- if __name__ == "__main__":
- main()
|