123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import paddle
- from ppocr.data import create_operators, transform
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import init_model
- from ppocr.utils.utility import get_image_file_list
- import tools.program as program
- def main():
- global_config = config['Global']
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- if hasattr(post_process_class, 'character'):
- config['Architecture']["Head"]['out_channels'] = len(
- getattr(post_process_class, 'character'))
- model = build_model(config['Architecture'])
- init_model(config, model, logger)
- # create data ops
- transforms = []
- for op in config['Eval']['dataset']['transforms']:
- op_name = list(op)[0]
- if 'Label' in op_name:
- continue
- elif op_name in ['RecResizeImg']:
- op[op_name]['infer_mode'] = True
- elif op_name == 'KeepKeys':
- if config['Architecture']['algorithm'] == "SRN":
- op[op_name]['keep_keys'] = [
- 'image', 'encoder_word_pos', 'gsrm_word_pos',
- 'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
- ]
- else:
- op[op_name]['keep_keys'] = ['image']
- transforms.append(op)
- global_config['infer_mode'] = True
- ops = create_operators(transforms, global_config)
- model.eval()
- for file in get_image_file_list(config['Global']['infer_img']):
- logger.info("infer_img: {}".format(file))
- with open(file, 'rb') as f:
- img = f.read()
- data = {'image': img}
- batch = transform(data, ops)
- if config['Architecture']['algorithm'] == "SRN":
- encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
- gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
- gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
- gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)
- others = [
- paddle.to_tensor(encoder_word_pos_list),
- paddle.to_tensor(gsrm_word_pos_list),
- paddle.to_tensor(gsrm_slf_attn_bias1_list),
- paddle.to_tensor(gsrm_slf_attn_bias2_list)
- ]
- images = np.expand_dims(batch[0], axis=0)
- images = paddle.to_tensor(images)
- if config['Architecture']['algorithm'] == "SRN":
- preds = model(images, others)
- else:
- preds = model(images)
- post_result = post_process_class(preds)
- for rec_reuslt in post_result:
- logger.info('\t result: {}'.format(rec_reuslt))
- logger.info("success!")
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|