123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- import math
- import cv2
- import numpy as np
- import json
- import sys
- import os
- __all__ = ['EASTProcessTrain']
- class EASTProcessTrain(object):
- def __init__(self,
- image_shape = [512, 512],
- background_ratio = 0.125,
- min_crop_side_ratio = 0.1,
- min_text_size = 10,
- **kwargs):
- self.input_size = image_shape[1]
- self.random_scale = np.array([0.5, 1, 2.0, 3.0])
- self.background_ratio = background_ratio
- self.min_crop_side_ratio = min_crop_side_ratio
- self.min_text_size = min_text_size
- def preprocess(self, im):
- input_size = self.input_size
- im_shape = im.shape
- im_size_min = np.min(im_shape[0:2])
- im_size_max = np.max(im_shape[0:2])
- im_scale = float(input_size) / float(im_size_max)
- im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
- img_mean = [0.485, 0.456, 0.406]
- img_std = [0.229, 0.224, 0.225]
- # im = im[:, :, ::-1].astype(np.float32)
- im = im / 255
- im -= img_mean
- im /= img_std
- new_h, new_w, _ = im.shape
- im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
- im_padded[:new_h, :new_w, :] = im
- im_padded = im_padded.transpose((2, 0, 1))
- im_padded = im_padded[np.newaxis, :]
- return im_padded, im_scale
- def rotate_im_poly(self, im, text_polys):
- """
- rotate image with 90 / 180 / 270 degre
- """
- im_w, im_h = im.shape[1], im.shape[0]
- dst_im = im.copy()
- dst_polys = []
- rand_degree_ratio = np.random.rand()
- rand_degree_cnt = 1
- if 0.333 < rand_degree_ratio < 0.666:
- rand_degree_cnt = 2
- elif rand_degree_ratio > 0.666:
- rand_degree_cnt = 3
- for i in range(rand_degree_cnt):
- dst_im = np.rot90(dst_im)
- rot_degree = -90 * rand_degree_cnt
- rot_angle = rot_degree * math.pi / 180.0
- n_poly = text_polys.shape[0]
- cx, cy = 0.5 * im_w, 0.5 * im_h
- ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
- for i in range(n_poly):
- wordBB = text_polys[i]
- poly = []
- for j in range(4):
- sx, sy = wordBB[j][0], wordBB[j][1]
- dx = math.cos(rot_angle) * (sx - cx)\
- - math.sin(rot_angle) * (sy - cy) + ncx
- dy = math.sin(rot_angle) * (sx - cx)\
- + math.cos(rot_angle) * (sy - cy) + ncy
- poly.append([dx, dy])
- dst_polys.append(poly)
- dst_polys = np.array(dst_polys, dtype=np.float32)
- return dst_im, dst_polys
- def polygon_area(self, poly):
- """
- compute area of a polygon
- :param poly:
- :return:
- """
- edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
- (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
- (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
- (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
- return np.sum(edge) / 2.
- def check_and_validate_polys(self, polys, tags, img_height, img_width):
- """
- check so that the text poly is in the same direction,
- and also filter some invalid polygons
- :param polys:
- :param tags:
- :return:
- """
- h, w = img_height, img_width
- if polys.shape[0] == 0:
- return polys
- polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
- polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
- validated_polys = []
- validated_tags = []
- for poly, tag in zip(polys, tags):
- p_area = self.polygon_area(poly)
- #invalid poly
- if abs(p_area) < 1:
- continue
- if p_area > 0:
- #'poly in wrong direction'
- if not tag:
- tag = True #reversed cases should be ignore
- poly = poly[(0, 3, 2, 1), :]
- validated_polys.append(poly)
- validated_tags.append(tag)
- return np.array(validated_polys), np.array(validated_tags)
- def draw_img_polys(self, img, polys):
- if len(img.shape) == 4:
- img = np.squeeze(img, axis=0)
- if img.shape[0] == 3:
- img = img.transpose((1, 2, 0))
- img[:, :, 2] += 123.68
- img[:, :, 1] += 116.78
- img[:, :, 0] += 103.94
- cv2.imwrite("tmp.jpg", img)
- img = cv2.imread("tmp.jpg")
- for box in polys:
- box = box.astype(np.int32).reshape((-1, 1, 2))
- cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
- import random
- ino = random.randint(0, 100)
- cv2.imwrite("tmp_%d.jpg" % ino, img)
- return
- def shrink_poly(self, poly, r):
- """
- fit a poly inside the origin poly, maybe bugs here...
- used for generate the score map
- :param poly: the text poly
- :param r: r in the paper
- :return: the shrinked poly
- """
- # shrink ratio
- R = 0.3
- # find the longer pair
- dist0 = np.linalg.norm(poly[0] - poly[1])
- dist1 = np.linalg.norm(poly[2] - poly[3])
- dist2 = np.linalg.norm(poly[0] - poly[3])
- dist3 = np.linalg.norm(poly[1] - poly[2])
- if dist0 + dist1 > dist2 + dist3:
- # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
- ## p0, p1
- theta = np.arctan2((poly[1][1] - poly[0][1]),
- (poly[1][0] - poly[0][0]))
- poly[0][0] += R * r[0] * np.cos(theta)
- poly[0][1] += R * r[0] * np.sin(theta)
- poly[1][0] -= R * r[1] * np.cos(theta)
- poly[1][1] -= R * r[1] * np.sin(theta)
- ## p2, p3
- theta = np.arctan2((poly[2][1] - poly[3][1]),
- (poly[2][0] - poly[3][0]))
- poly[3][0] += R * r[3] * np.cos(theta)
- poly[3][1] += R * r[3] * np.sin(theta)
- poly[2][0] -= R * r[2] * np.cos(theta)
- poly[2][1] -= R * r[2] * np.sin(theta)
- ## p0, p3
- theta = np.arctan2((poly[3][0] - poly[0][0]),
- (poly[3][1] - poly[0][1]))
- poly[0][0] += R * r[0] * np.sin(theta)
- poly[0][1] += R * r[0] * np.cos(theta)
- poly[3][0] -= R * r[3] * np.sin(theta)
- poly[3][1] -= R * r[3] * np.cos(theta)
- ## p1, p2
- theta = np.arctan2((poly[2][0] - poly[1][0]),
- (poly[2][1] - poly[1][1]))
- poly[1][0] += R * r[1] * np.sin(theta)
- poly[1][1] += R * r[1] * np.cos(theta)
- poly[2][0] -= R * r[2] * np.sin(theta)
- poly[2][1] -= R * r[2] * np.cos(theta)
- else:
- ## p0, p3
- # print poly
- theta = np.arctan2((poly[3][0] - poly[0][0]),
- (poly[3][1] - poly[0][1]))
- poly[0][0] += R * r[0] * np.sin(theta)
- poly[0][1] += R * r[0] * np.cos(theta)
- poly[3][0] -= R * r[3] * np.sin(theta)
- poly[3][1] -= R * r[3] * np.cos(theta)
- ## p1, p2
- theta = np.arctan2((poly[2][0] - poly[1][0]),
- (poly[2][1] - poly[1][1]))
- poly[1][0] += R * r[1] * np.sin(theta)
- poly[1][1] += R * r[1] * np.cos(theta)
- poly[2][0] -= R * r[2] * np.sin(theta)
- poly[2][1] -= R * r[2] * np.cos(theta)
- ## p0, p1
- theta = np.arctan2((poly[1][1] - poly[0][1]),
- (poly[1][0] - poly[0][0]))
- poly[0][0] += R * r[0] * np.cos(theta)
- poly[0][1] += R * r[0] * np.sin(theta)
- poly[1][0] -= R * r[1] * np.cos(theta)
- poly[1][1] -= R * r[1] * np.sin(theta)
- ## p2, p3
- theta = np.arctan2((poly[2][1] - poly[3][1]),
- (poly[2][0] - poly[3][0]))
- poly[3][0] += R * r[3] * np.cos(theta)
- poly[3][1] += R * r[3] * np.sin(theta)
- poly[2][0] -= R * r[2] * np.cos(theta)
- poly[2][1] -= R * r[2] * np.sin(theta)
- return poly
- def generate_quad(self, im_size, polys, tags):
- """
- Generate quadrangle.
- """
- h, w = im_size
- poly_mask = np.zeros((h, w), dtype=np.uint8)
- score_map = np.zeros((h, w), dtype=np.uint8)
- # (x1, y1, ..., x4, y4, short_edge_norm)
- geo_map = np.zeros((h, w, 9), dtype=np.float32)
- # mask used during traning, to ignore some hard areas
- training_mask = np.ones((h, w), dtype=np.uint8)
- for poly_idx, poly_tag in enumerate(zip(polys, tags)):
- poly = poly_tag[0]
- tag = poly_tag[1]
- r = [None, None, None, None]
- for i in range(4):
- dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
- dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
- r[i] = min(dist1, dist2)
- # score map
- shrinked_poly = self.shrink_poly(
- poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
- cv2.fillPoly(score_map, shrinked_poly, 1)
- cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
- # if the poly is too small, then ignore it during training
- poly_h = min(
- np.linalg.norm(poly[0] - poly[3]),
- np.linalg.norm(poly[1] - poly[2]))
- poly_w = min(
- np.linalg.norm(poly[0] - poly[1]),
- np.linalg.norm(poly[2] - poly[3]))
- if min(poly_h, poly_w) < self.min_text_size:
- cv2.fillPoly(training_mask,
- poly.astype(np.int32)[np.newaxis, :, :], 0)
- if tag:
- cv2.fillPoly(training_mask,
- poly.astype(np.int32)[np.newaxis, :, :], 0)
- xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
- # geo map.
- y_in_poly = xy_in_poly[:, 0]
- x_in_poly = xy_in_poly[:, 1]
- poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
- poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
- for pno in range(4):
- geo_channel_beg = pno * 2
- geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
- x_in_poly - poly[pno, 0]
- geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
- y_in_poly - poly[pno, 1]
- geo_map[y_in_poly, x_in_poly, 8] = \
- 1.0 / max(min(poly_h, poly_w), 1.0)
- return score_map, geo_map, training_mask
- def crop_area(self,
- im,
- polys,
- tags,
- crop_background=False,
- max_tries=50):
- """
- make random crop from the input image
- :param im:
- :param polys:
- :param tags:
- :param crop_background:
- :param max_tries:
- :return:
- """
- h, w, _ = im.shape
- pad_h = h // 10
- pad_w = w // 10
- h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
- w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
- for poly in polys:
- poly = np.round(poly, decimals=0).astype(np.int32)
- minx = np.min(poly[:, 0])
- maxx = np.max(poly[:, 0])
- w_array[minx + pad_w:maxx + pad_w] = 1
- miny = np.min(poly[:, 1])
- maxy = np.max(poly[:, 1])
- h_array[miny + pad_h:maxy + pad_h] = 1
- # ensure the cropped area not across a text
- h_axis = np.where(h_array == 0)[0]
- w_axis = np.where(w_array == 0)[0]
- if len(h_axis) == 0 or len(w_axis) == 0:
- return im, polys, tags
- for i in range(max_tries):
- xx = np.random.choice(w_axis, size=2)
- xmin = np.min(xx) - pad_w
- xmax = np.max(xx) - pad_w
- xmin = np.clip(xmin, 0, w - 1)
- xmax = np.clip(xmax, 0, w - 1)
- yy = np.random.choice(h_axis, size=2)
- ymin = np.min(yy) - pad_h
- ymax = np.max(yy) - pad_h
- ymin = np.clip(ymin, 0, h - 1)
- ymax = np.clip(ymax, 0, h - 1)
- if xmax - xmin < self.min_crop_side_ratio * w or \
- ymax - ymin < self.min_crop_side_ratio * h:
- # area too small
- continue
- if polys.shape[0] != 0:
- poly_axis_in_area = (polys[:, :, 0] >= xmin)\
- & (polys[:, :, 0] <= xmax)\
- & (polys[:, :, 1] >= ymin)\
- & (polys[:, :, 1] <= ymax)
- selected_polys = np.where(
- np.sum(poly_axis_in_area, axis=1) == 4)[0]
- else:
- selected_polys = []
- if len(selected_polys) == 0:
- # no text in this area
- if crop_background:
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
- polys = []
- tags = []
- return im, polys, tags
- else:
- continue
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
- polys = polys[selected_polys]
- tags = tags[selected_polys]
- polys[:, :, 0] -= xmin
- polys[:, :, 1] -= ymin
- return im, polys, tags
- return im, polys, tags
- def crop_background_infor(self, im, text_polys, text_tags):
- im, text_polys, text_tags = self.crop_area(
- im, text_polys, text_tags, crop_background=True)
- if len(text_polys) > 0:
- return None
- # pad and resize image
- input_size = self.input_size
- im, ratio = self.preprocess(im)
- score_map = np.zeros((input_size, input_size), dtype=np.float32)
- geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
- training_mask = np.ones((input_size, input_size), dtype=np.float32)
- return im, score_map, geo_map, training_mask
- def crop_foreground_infor(self, im, text_polys, text_tags):
- im, text_polys, text_tags = self.crop_area(
- im, text_polys, text_tags, crop_background=False)
- if text_polys.shape[0] == 0:
- return None
- #continue for all ignore case
- if np.sum((text_tags * 1.0)) >= text_tags.size:
- return None
- # pad and resize image
- input_size = self.input_size
- im, ratio = self.preprocess(im)
- text_polys[:, :, 0] *= ratio
- text_polys[:, :, 1] *= ratio
- _, _, new_h, new_w = im.shape
- # print(im.shape)
- # self.draw_img_polys(im, text_polys)
- score_map, geo_map, training_mask = self.generate_quad(
- (new_h, new_w), text_polys, text_tags)
- return im, score_map, geo_map, training_mask
- def __call__(self, data):
- im = data['image']
- text_polys = data['polys']
- text_tags = data['ignore_tags']
- if im is None:
- return None
- if text_polys.shape[0] == 0:
- return None
- #add rotate cases
- if np.random.rand() < 0.5:
- im, text_polys = self.rotate_im_poly(im, text_polys)
- h, w, _ = im.shape
- text_polys, text_tags = self.check_and_validate_polys(text_polys,
- text_tags, h, w)
- if text_polys.shape[0] == 0:
- return None
- # random scale this image
- rd_scale = np.random.choice(self.random_scale)
- im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
- text_polys *= rd_scale
- if np.random.rand() < self.background_ratio:
- outs = self.crop_background_infor(im, text_polys, text_tags)
- else:
- outs = self.crop_foreground_infor(im, text_polys, text_tags)
- if outs is None:
- return None
- im, score_map, geo_map, training_mask = outs
- score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
- geo_map = np.swapaxes(geo_map, 1, 2)
- geo_map = np.swapaxes(geo_map, 1, 0)
- geo_map = geo_map[:, ::4, ::4].astype(np.float32)
- training_mask = training_mask[np.newaxis, ::4, ::4]
- training_mask = training_mask.astype(np.float32)
- data['image'] = im[0]
- data['score_map'] = score_map
- data['geo_map'] = geo_map
- data['training_mask'] = training_mask
- # print(im.shape, score_map.shape, geo_map.shape, training_mask.shape)
- return data
|