123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import cv2
- import numpy as np
- import random
- from .text_image_aug import tia_perspective, tia_stretch, tia_distort
- class RecAug(object):
- def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
- self.use_tia = use_tia
- self.aug_prob = aug_prob
- def __call__(self, data):
- img = data['image']
- img = warp(img, 10, self.use_tia, self.aug_prob)
- data['image'] = img
- return data
- class ClsResizeImg(object):
- def __init__(self, image_shape, **kwargs):
- self.image_shape = image_shape
- def __call__(self, data):
- img = data['image']
- norm_img = resize_norm_img(img, self.image_shape)
- data['image'] = norm_img
- return data
- class RecResizeImg(object):
- def __init__(self,
- image_shape,
- infer_mode=False,
- character_type='ch',
- **kwargs):
- self.image_shape = image_shape
- self.infer_mode = infer_mode
- self.character_type = character_type
- def __call__(self, data):
- img = data['image']
- if self.infer_mode and self.character_type == "ch":
- norm_img = resize_norm_img_chinese(img, self.image_shape)
- else:
- norm_img = resize_norm_img(img, self.image_shape)
- data['image'] = norm_img
- return data
- class SRNRecResizeImg(object):
- def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
- self.image_shape = image_shape
- self.num_heads = num_heads
- self.max_text_length = max_text_length
- def __call__(self, data):
- img = data['image']
- norm_img = resize_norm_img_srn(img, self.image_shape)
- data['image'] = norm_img
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
- srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
- data['encoder_word_pos'] = encoder_word_pos
- data['gsrm_word_pos'] = gsrm_word_pos
- data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
- data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
- return data
- def resize_norm_img(img, image_shape):
- imgC, imgH, imgW = image_shape
- h = img.shape[0]
- w = img.shape[1]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def resize_norm_img_chinese(img, image_shape):
- imgC, imgH, imgW = image_shape
- # todo: change to 0 and modified image shape
- max_wh_ratio = imgW * 1.0 / imgH
- h, w = img.shape[0], img.shape[1]
- ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, ratio)
- imgW = int(32 * max_wh_ratio)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def resize_norm_img_srn(img, image_shape):
- imgC, imgH, imgW = image_shape
- img_black = np.zeros((imgH, imgW))
- im_hei = img.shape[0]
- im_wid = img.shape[1]
- if im_wid <= im_hei * 1:
- img_new = cv2.resize(img, (imgH * 1, imgH))
- elif im_wid <= im_hei * 2:
- img_new = cv2.resize(img, (imgH * 2, imgH))
- elif im_wid <= im_hei * 3:
- img_new = cv2.resize(img, (imgH * 3, imgH))
- else:
- img_new = cv2.resize(img, (imgW, imgH))
- img_np = np.asarray(img_new)
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
- img_black[:, 0:img_np.shape[1]] = img_np
- img_black = img_black[:, :, np.newaxis]
- row, col, c = img_black.shape
- c = 1
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
- def srn_other_inputs(image_shape, num_heads, max_text_length):
- imgC, imgH, imgW = image_shape
- feature_dim = int((imgH / 8) * (imgW / 8))
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
- (feature_dim, 1)).astype('int64')
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
- (max_text_length, 1)).astype('int64')
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
- [1, max_text_length, max_text_length])
- gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
- [num_heads, 1, 1]) * [-1e9]
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
- [1, max_text_length, max_text_length])
- gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
- [num_heads, 1, 1]) * [-1e9]
- return [
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2
- ]
- def flag():
- """
- flag
- """
- return 1 if random.random() > 0.5000001 else -1
- def cvtColor(img):
- """
- cvtColor
- """
- hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
- delta = 0.001 * random.random() * flag()
- hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
- new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
- return new_img
- def blur(img):
- """
- blur
- """
- h, w, _ = img.shape
- if h > 10 and w > 10:
- return cv2.GaussianBlur(img, (5, 5), 1)
- else:
- return img
- def jitter(img):
- """
- jitter
- """
- w, h, _ = img.shape
- if h > 10 and w > 10:
- thres = min(w, h)
- s = int(random.random() * thres * 0.01)
- src_img = img.copy()
- for i in range(s):
- img[i:, i:, :] = src_img[:w - i, :h - i, :]
- return img
- else:
- return img
- def add_gasuss_noise(image, mean=0, var=0.1):
- """
- Gasuss noise
- """
- noise = np.random.normal(mean, var**0.5, image.shape)
- out = image + 0.5 * noise
- out = np.clip(out, 0, 255)
- out = np.uint8(out)
- return out
- def get_crop(image):
- """
- random crop
- """
- h, w, _ = image.shape
- top_min = 1
- top_max = 8
- top_crop = int(random.randint(top_min, top_max))
- top_crop = min(top_crop, h - 1)
- crop_img = image.copy()
- ratio = random.randint(0, 1)
- if ratio:
- crop_img = crop_img[top_crop:h, :, :]
- else:
- crop_img = crop_img[0:h - top_crop, :, :]
- return crop_img
- class Config:
- """
- Config
- """
- def __init__(self, use_tia):
- self.anglex = random.random() * 30
- self.angley = random.random() * 15
- self.anglez = random.random() * 10
- self.fov = 42
- self.r = 0
- self.shearx = random.random() * 0.3
- self.sheary = random.random() * 0.05
- self.borderMode = cv2.BORDER_REPLICATE
- self.use_tia = use_tia
- def make(self, w, h, ang):
- """
- make
- """
- self.anglex = random.random() * 5 * flag()
- self.angley = random.random() * 5 * flag()
- self.anglez = -1 * random.random() * int(ang) * flag()
- self.fov = 42
- self.r = 0
- self.shearx = 0
- self.sheary = 0
- self.borderMode = cv2.BORDER_REPLICATE
- self.w = w
- self.h = h
- self.perspective = self.use_tia
- self.stretch = self.use_tia
- self.distort = self.use_tia
- self.crop = True
- self.affine = False
- self.reverse = True
- self.noise = True
- self.jitter = True
- self.blur = True
- self.color = True
- def rad(x):
- """
- rad
- """
- return x * np.pi / 180
- def get_warpR(config):
- """
- get_warpR
- """
- anglex, angley, anglez, fov, w, h, r = \
- config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
- if w > 69 and w < 112:
- anglex = anglex * 1.5
- z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
- # Homogeneous coordinate transformation matrix
- rx = np.array([[1, 0, 0, 0],
- [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
- 0,
- -np.sin(rad(anglex)),
- np.cos(rad(anglex)),
- 0,
- ], [0, 0, 0, 1]], np.float32)
- ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
- [0, 1, 0, 0], [
- -np.sin(rad(angley)),
- 0,
- np.cos(rad(angley)),
- 0,
- ], [0, 0, 0, 1]], np.float32)
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
- [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
- r = rx.dot(ry).dot(rz)
- # generate 4 points
- pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
- p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
- p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
- p3 = np.array([0, h, 0, 0], np.float32) - pcenter
- p4 = np.array([w, h, 0, 0], np.float32) - pcenter
- dst1 = r.dot(p1)
- dst2 = r.dot(p2)
- dst3 = r.dot(p3)
- dst4 = r.dot(p4)
- list_dst = np.array([dst1, dst2, dst3, dst4])
- org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
- dst = np.zeros((4, 2), np.float32)
- # Project onto the image plane
- dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
- dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
- warpR = cv2.getPerspectiveTransform(org, dst)
- dst1, dst2, dst3, dst4 = dst
- r1 = int(min(dst1[1], dst2[1]))
- r2 = int(max(dst3[1], dst4[1]))
- c1 = int(min(dst1[0], dst3[0]))
- c2 = int(max(dst2[0], dst4[0]))
- try:
- ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
- dx = -c1
- dy = -r1
- T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
- ret = T1.dot(warpR)
- except:
- ratio = 1.0
- T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
- ret = T1
- return ret, (-r1, -c1), ratio, dst
- def get_warpAffine(config):
- """
- get_warpAffine
- """
- anglez = config.anglez
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
- return rz
- def warp(img, ang, use_tia=True, prob=0.4):
- """
- warp
- """
- h, w, _ = img.shape
- config = Config(use_tia=use_tia)
- config.make(w, h, ang)
- new_img = img
- if config.distort:
- img_height, img_width = img.shape[0:2]
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
- new_img = tia_distort(new_img, random.randint(3, 6))
- if config.stretch:
- img_height, img_width = img.shape[0:2]
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
- new_img = tia_stretch(new_img, random.randint(3, 6))
- if config.perspective:
- if random.random() <= prob:
- new_img = tia_perspective(new_img)
- if config.crop:
- img_height, img_width = img.shape[0:2]
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
- new_img = get_crop(new_img)
- if config.blur:
- if random.random() <= prob:
- new_img = blur(new_img)
- if config.color:
- if random.random() <= prob:
- new_img = cvtColor(new_img)
- if config.jitter:
- new_img = jitter(new_img)
- if config.noise:
- if random.random() <= prob:
- new_img = add_gasuss_noise(new_img)
- if config.reverse:
- if random.random() <= prob:
- new_img = 255 - new_img
- return new_img
|