123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from paddle import nn
- from ppocr.modeling.backbones.det_mobilenet_v3 import ResidualUnit, ConvBNLayer, make_divisible
- __all__ = ['MobileNetV3']
- class MobileNetV3(nn.Layer):
- def __init__(self,
- in_channels=3,
- model_name='small',
- scale=0.5,
- large_stride=None,
- small_stride=None,
- **kwargs):
- super(MobileNetV3, self).__init__()
- if small_stride is None:
- small_stride = [2, 2, 2, 2]
- if large_stride is None:
- large_stride = [1, 2, 2, 2]
- assert isinstance(large_stride, list), "large_stride type must " \
- "be list but got {}".format(type(large_stride))
- assert isinstance(small_stride, list), "small_stride type must " \
- "be list but got {}".format(type(small_stride))
- assert len(large_stride) == 4, "large_stride length must be " \
- "4 but got {}".format(len(large_stride))
- assert len(small_stride) == 4, "small_stride length must be " \
- "4 but got {}".format(len(small_stride))
- if model_name == "large":
- cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, False, 'relu', large_stride[0]],
- [3, 64, 24, False, 'relu', (large_stride[1], 1)],
- [3, 72, 24, False, 'relu', 1],
- [5, 72, 40, True, 'relu', (large_stride[2], 1)],
- [5, 120, 40, True, 'relu', 1],
- [5, 120, 40, True, 'relu', 1],
- [3, 240, 80, False, 'hardswish', 1],
- [3, 200, 80, False, 'hardswish', 1],
- [3, 184, 80, False, 'hardswish', 1],
- [3, 184, 80, False, 'hardswish', 1],
- [3, 480, 112, True, 'hardswish', 1],
- [3, 672, 112, True, 'hardswish', 1],
- [5, 672, 160, True, 'hardswish', (large_stride[3], 1)],
- [5, 960, 160, True, 'hardswish', 1],
- [5, 960, 160, True, 'hardswish', 1],
- ]
- cls_ch_squeeze = 960
- elif model_name == "small":
- cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, True, 'relu', (small_stride[0], 1)],
- [3, 72, 24, False, 'relu', (small_stride[1], 1)],
- [3, 88, 24, False, 'relu', 1],
- [5, 96, 40, True, 'hardswish', (small_stride[2], 1)],
- [5, 240, 40, True, 'hardswish', 1],
- [5, 240, 40, True, 'hardswish', 1],
- [5, 120, 48, True, 'hardswish', 1],
- [5, 144, 48, True, 'hardswish', 1],
- [5, 288, 96, True, 'hardswish', (small_stride[3], 1)],
- [5, 576, 96, True, 'hardswish', 1],
- [5, 576, 96, True, 'hardswish', 1],
- ]
- cls_ch_squeeze = 576
- else:
- raise NotImplementedError("mode[" + model_name +
- "_model] is not implemented!")
- supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
- assert scale in supported_scale, \
- "supported scales are {} but input scale is {}".format(supported_scale, scale)
- inplanes = 16
- # conv1
- self.conv1 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=make_divisible(inplanes * scale),
- kernel_size=3,
- stride=2,
- padding=1,
- groups=1,
- if_act=True,
- act='hardswish',
- name='conv1')
- i = 0
- block_list = []
- inplanes = make_divisible(inplanes * scale)
- for (k, exp, c, se, nl, s) in cfg:
- block_list.append(
- ResidualUnit(
- in_channels=inplanes,
- mid_channels=make_divisible(scale * exp),
- out_channels=make_divisible(scale * c),
- kernel_size=k,
- stride=s,
- use_se=se,
- act=nl,
- name='conv' + str(i + 2)))
- inplanes = make_divisible(scale * c)
- i += 1
- self.blocks = nn.Sequential(*block_list)
- self.conv2 = ConvBNLayer(
- in_channels=inplanes,
- out_channels=make_divisible(scale * cls_ch_squeeze),
- kernel_size=1,
- stride=1,
- padding=0,
- groups=1,
- if_act=True,
- act='hardswish',
- name='conv_last')
- self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
- self.out_channels = make_divisible(scale * cls_ch_squeeze)
- def forward(self, x):
- x = self.conv1(x)
- x = self.blocks(x)
- x = self.conv2(x)
- x = self.pool(x)
- return x
|