123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- groups=1,
- if_act=True,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- self.if_act = if_act
- self.act = act
- self.conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- weight_attr=ParamAttr(name=name + '_weights'),
- bias_attr=False)
- self.bn = nn.BatchNorm(
- num_channels=out_channels,
- act=act,
- param_attr=ParamAttr(name="bn_" + name + "_scale"),
- bias_attr=ParamAttr(name="bn_" + name + "_offset"),
- moving_mean_name="bn_" + name + "_mean",
- moving_variance_name="bn_" + name + "_variance")
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- return x
- class DeConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- groups=1,
- if_act=True,
- act=None,
- name=None):
- super(DeConvBNLayer, self).__init__()
- self.if_act = if_act
- self.act = act
- self.deconv = nn.Conv2DTranspose(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- weight_attr=ParamAttr(name=name + '_weights'),
- bias_attr=False)
- self.bn = nn.BatchNorm(
- num_channels=out_channels,
- act=act,
- param_attr=ParamAttr(name="bn_" + name + "_scale"),
- bias_attr=ParamAttr(name="bn_" + name + "_offset"),
- moving_mean_name="bn_" + name + "_mean",
- moving_variance_name="bn_" + name + "_variance")
- def forward(self, x):
- x = self.deconv(x)
- x = self.bn(x)
- return x
- class EASTFPN(nn.Layer):
- def __init__(self, in_channels, model_name, **kwargs):
- super(EASTFPN, self).__init__()
- self.model_name = model_name
- if self.model_name == "large":
- self.out_channels = 128
- else:
- self.out_channels = 64
- self.in_channels = in_channels[::-1]
- self.h1_conv = ConvBNLayer(
- in_channels=self.out_channels+self.in_channels[1],
- out_channels=self.out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_h_1")
- self.h2_conv = ConvBNLayer(
- in_channels=self.out_channels+self.in_channels[2],
- out_channels=self.out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_h_2")
- self.h3_conv = ConvBNLayer(
- in_channels=self.out_channels+self.in_channels[3],
- out_channels=self.out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_h_3")
- self.g0_deconv = DeConvBNLayer(
- in_channels=self.in_channels[0],
- out_channels=self.out_channels,
- kernel_size=4,
- stride=2,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_g_0")
- self.g1_deconv = DeConvBNLayer(
- in_channels=self.out_channels,
- out_channels=self.out_channels,
- kernel_size=4,
- stride=2,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_g_1")
- self.g2_deconv = DeConvBNLayer(
- in_channels=self.out_channels,
- out_channels=self.out_channels,
- kernel_size=4,
- stride=2,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_g_2")
- self.g3_conv = ConvBNLayer(
- in_channels=self.out_channels,
- out_channels=self.out_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- if_act=True,
- act='relu',
- name="unet_g_3")
- def forward(self, x):
- f = x[::-1]
- h = f[0]
- g = self.g0_deconv(h)
- h = paddle.concat([g, f[1]], axis=1)
- h = self.h1_conv(h)
- g = self.g1_deconv(h)
- h = paddle.concat([g, f[2]], axis=1)
- h = self.h2_conv(h)
- g = self.g2_deconv(h)
- h = paddle.concat([g, f[3]], axis=1)
- h = self.h3_conv(h)
- g = self.g3_conv(h)
- return g
|