123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn, ParamAttr
- from paddle.nn import functional as F
- import numpy as np
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- self.conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False)
- bn_name = "bn_" + name
- self.bn = nn.BatchNorm(
- out_channels,
- act=act,
- param_attr=ParamAttr(name=bn_name + '_scale'),
- bias_attr=ParamAttr(bn_name + '_offset'),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- return x
- class LocalizationNetwork(nn.Layer):
- def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
- super(LocalizationNetwork, self).__init__()
- self.F = num_fiducial
- F = num_fiducial
- if model_name == "large":
- num_filters_list = [64, 128, 256, 512]
- fc_dim = 256
- else:
- num_filters_list = [16, 32, 64, 128]
- fc_dim = 64
- self.block_list = []
- for fno in range(0, len(num_filters_list)):
- num_filters = num_filters_list[fno]
- name = "loc_conv%d" % fno
- conv = self.add_sublayer(
- name,
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=num_filters,
- kernel_size=3,
- act='relu',
- name=name))
- self.block_list.append(conv)
- if fno == len(num_filters_list) - 1:
- pool = nn.AdaptiveAvgPool2D(1)
- else:
- pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
- in_channels = num_filters
- self.block_list.append(pool)
- name = "loc_fc1"
- stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
- self.fc1 = nn.Linear(
- in_channels,
- fc_dim,
- weight_attr=ParamAttr(
- learning_rate=loc_lr,
- name=name + "_w",
- initializer=nn.initializer.Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(name=name + '.b_0'),
- name=name)
- # Init fc2 in LocalizationNetwork
- initial_bias = self.get_initial_fiducials()
- initial_bias = initial_bias.reshape(-1)
- name = "loc_fc2"
- param_attr = ParamAttr(
- learning_rate=loc_lr,
- initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
- name=name + "_w")
- bias_attr = ParamAttr(
- learning_rate=loc_lr,
- initializer=nn.initializer.Assign(initial_bias),
- name=name + "_b")
- self.fc2 = nn.Linear(
- fc_dim,
- F * 2,
- weight_attr=param_attr,
- bias_attr=bias_attr,
- name=name)
- self.out_channels = F * 2
- def forward(self, x):
- """
- Estimating parameters of geometric transformation
- Args:
- image: input
- Return:
- batch_C_prime: the matrix of the geometric transformation
- """
- B = x.shape[0]
- i = 0
- for block in self.block_list:
- x = block(x)
- x = x.squeeze(axis=2).squeeze(axis=2)
- x = self.fc1(x)
- x = F.relu(x)
- x = self.fc2(x)
- x = x.reshape(shape=[-1, self.F, 2])
- return x
- def get_initial_fiducials(self):
- """ see RARE paper Fig. 6 (a) """
- F = self.F
- ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
- ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
- ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
- return initial_bias
- class GridGenerator(nn.Layer):
- def __init__(self, in_channels, num_fiducial):
- super(GridGenerator, self).__init__()
- self.eps = 1e-6
- self.F = num_fiducial
- name = "ex_fc"
- initializer = nn.initializer.Constant(value=0.0)
- param_attr = ParamAttr(
- learning_rate=0.0, initializer=initializer, name=name + "_w")
- bias_attr = ParamAttr(
- learning_rate=0.0, initializer=initializer, name=name + "_b")
- self.fc = nn.Linear(
- in_channels,
- 6,
- weight_attr=param_attr,
- bias_attr=bias_attr,
- name=name)
- def forward(self, batch_C_prime, I_r_size):
- """
- Generate the grid for the grid_sampler.
- Args:
- batch_C_prime: the matrix of the geometric transformation
- I_r_size: the shape of the input image
- Return:
- batch_P_prime: the grid for the grid_sampler
- """
- C = self.build_C_paddle()
- P = self.build_P_paddle(I_r_size)
- inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
- P_hat_tensor = self.build_P_hat_paddle(
- C, paddle.to_tensor(P)).astype('float32')
- inv_delta_C_tensor.stop_gradient = True
- P_hat_tensor.stop_gradient = True
- batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
- batch_C_ex_part_tensor.stop_gradient = True
- batch_C_prime_with_zeros = paddle.concat(
- [batch_C_prime, batch_C_ex_part_tensor], axis=1)
- batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
- batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
- return batch_P_prime
- def build_C_paddle(self):
- """ Return coordinates of fiducial points in I_r; C """
- F = self.F
- ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
- ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
- ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
- ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
- return C # F x 2
- def build_P_paddle(self, I_r_size):
- I_r_height, I_r_width = I_r_size
- I_r_grid_x = (paddle.arange(
- -I_r_width, I_r_width, 2, dtype='float64') + 1.0
- ) / paddle.to_tensor(np.array([I_r_width]))
- I_r_grid_y = (paddle.arange(
- -I_r_height, I_r_height, 2, dtype='float64') + 1.0
- ) / paddle.to_tensor(np.array([I_r_height]))
- # P: self.I_r_width x self.I_r_height x 2
- P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
- P = paddle.transpose(P, perm=[1, 0, 2])
- # n (= self.I_r_width x self.I_r_height) x 2
- return P.reshape([-1, 2])
- def build_inv_delta_C_paddle(self, C):
- """ Return inv_delta_C which is needed to calculate T """
- F = self.F
- hat_C = paddle.zeros((F, F), dtype='float64') # F x F
- for i in range(0, F):
- for j in range(i, F):
- if i == j:
- hat_C[i, j] = 1
- else:
- r = paddle.norm(C[i] - C[j])
- hat_C[i, j] = r
- hat_C[j, i] = r
- hat_C = (hat_C**2) * paddle.log(hat_C)
- delta_C = paddle.concat( # F+3 x F+3
- [
- paddle.concat(
- [paddle.ones(
- (F, 1), dtype='float64'), C, hat_C], axis=1), # F x F+3
- paddle.concat(
- [
- paddle.zeros(
- (2, 3), dtype='float64'), paddle.transpose(
- C, perm=[1, 0])
- ],
- axis=1), # 2 x F+3
- paddle.concat(
- [
- paddle.zeros(
- (1, 3), dtype='float64'), paddle.ones(
- (1, F), dtype='float64')
- ],
- axis=1) # 1 x F+3
- ],
- axis=0)
- inv_delta_C = paddle.inverse(delta_C)
- return inv_delta_C # F+3 x F+3
- def build_P_hat_paddle(self, C, P):
- F = self.F
- eps = self.eps
- n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
- # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
- P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
- C_tile = paddle.unsqueeze(C, axis=0) # 1 x F x 2
- P_diff = P_tile - C_tile # n x F x 2
- # rbf_norm: n x F
- rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)
- # rbf: n x F
- rbf = paddle.multiply(
- paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
- P_hat = paddle.concat(
- [paddle.ones(
- (n, 1), dtype='float64'), P, rbf], axis=1)
- return P_hat # n x F+3
- def get_expand_tensor(self, batch_C_prime):
- B, H, C = batch_C_prime.shape
- batch_C_prime = batch_C_prime.reshape([B, H * C])
- batch_C_ex_part_tensor = self.fc(batch_C_prime)
- batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
- return batch_C_ex_part_tensor
- class TPS(nn.Layer):
- def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
- super(TPS, self).__init__()
- self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
- model_name)
- self.grid_generator = GridGenerator(self.loc_net.out_channels,
- num_fiducial)
- self.out_channels = in_channels
- def forward(self, image):
- image.stop_gradient = False
- batch_C_prime = self.loc_net(image)
- batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
- batch_P_prime = batch_P_prime.reshape(
- [-1, image.shape[2], image.shape[3], 2])
- batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
- return batch_I_r
|