123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- from paddle.optimizer import lr
- from .lr_scheduler import CyclicalCosineDecay
- class Linear(object):
- """
- Linear learning rate decay
- Args:
- lr (float): The initial learning rate. It is a python float number.
- epochs(int): The decay step size. It determines the decay cycle.
- end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
- power(float, optional): Power of polynomial. Default: 1.0.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- epochs,
- step_each_epoch,
- end_lr=0.0,
- power=1.0,
- warmup_epoch=0,
- last_epoch=-1,
- **kwargs):
- super(Linear, self).__init__()
- self.learning_rate = learning_rate
- self.epochs = epochs * step_each_epoch
- self.end_lr = end_lr
- self.power = power
- self.last_epoch = last_epoch
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
- def __call__(self):
- learning_rate = lr.PolynomialDecay(
- learning_rate=self.learning_rate,
- decay_steps=self.epochs,
- end_lr=self.end_lr,
- power=self.power,
- last_epoch=self.last_epoch)
- if self.warmup_epoch > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_epoch,
- start_lr=0.0,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
- class Cosine(object):
- """
- Cosine learning rate decay
- lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
- Args:
- lr(float): initial learning rate
- step_each_epoch(int): steps each epoch
- epochs(int): total training epochs
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- step_each_epoch,
- epochs,
- warmup_epoch=0,
- last_epoch=-1,
- **kwargs):
- super(Cosine, self).__init__()
- self.learning_rate = learning_rate
- self.T_max = step_each_epoch * epochs
- self.last_epoch = last_epoch
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
- def __call__(self):
- learning_rate = lr.CosineAnnealingDecay(
- learning_rate=self.learning_rate,
- T_max=self.T_max,
- last_epoch=self.last_epoch)
- if self.warmup_epoch > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_epoch,
- start_lr=0.0,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
- class Step(object):
- """
- Piecewise learning rate decay
- Args:
- step_each_epoch(int): steps each epoch
- learning_rate (float): The initial learning rate. It is a python float number.
- step_size (int): the interval to update.
- gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
- It should be less than 1.0. Default: 0.1.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- step_size,
- step_each_epoch,
- gamma,
- warmup_epoch=0,
- last_epoch=-1,
- **kwargs):
- super(Step, self).__init__()
- self.step_size = step_each_epoch * step_size
- self.learning_rate = learning_rate
- self.gamma = gamma
- self.last_epoch = last_epoch
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
- def __call__(self):
- learning_rate = lr.StepDecay(
- learning_rate=self.learning_rate,
- step_size=self.step_size,
- gamma=self.gamma,
- last_epoch=self.last_epoch)
- if self.warmup_epoch > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_epoch,
- start_lr=0.0,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
- class Piecewise(object):
- """
- Piecewise learning rate decay
- Args:
- boundaries(list): A list of steps numbers. The type of element in the list is python int.
- values(list): A list of learning rate values that will be picked during different epoch boundaries.
- The type of element in the list is python float.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- step_each_epoch,
- decay_epochs,
- values,
- warmup_epoch=0,
- last_epoch=-1,
- **kwargs):
- super(Piecewise, self).__init__()
- self.boundaries = [step_each_epoch * e for e in decay_epochs]
- self.values = values
- self.last_epoch = last_epoch
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
- def __call__(self):
- learning_rate = lr.PiecewiseDecay(
- boundaries=self.boundaries,
- values=self.values,
- last_epoch=self.last_epoch)
- if self.warmup_epoch > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_epoch,
- start_lr=0.0,
- end_lr=self.values[0],
- last_epoch=self.last_epoch)
- return learning_rate
- class CyclicalCosine(object):
- """
- Cyclical cosine learning rate decay
- Args:
- learning_rate(float): initial learning rate
- step_each_epoch(int): steps each epoch
- epochs(int): total training epochs
- cycle(int): period of the cosine learning rate
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- step_each_epoch,
- epochs,
- cycle,
- warmup_epoch=0,
- last_epoch=-1,
- **kwargs):
- super(CyclicalCosine, self).__init__()
- self.learning_rate = learning_rate
- self.T_max = step_each_epoch * epochs
- self.last_epoch = last_epoch
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
- self.cycle = round(cycle * step_each_epoch)
- def __call__(self):
- learning_rate = CyclicalCosineDecay(
- learning_rate=self.learning_rate,
- T_max=self.T_max,
- cycle=self.cycle,
- last_epoch=self.last_epoch)
- if self.warmup_epoch > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_epoch,
- start_lr=0.0,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
|