123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- from paddle import optimizer as optim
- class Momentum(object):
- """
- Simple Momentum optimizer with velocity state.
- Args:
- learning_rate (float|Variable) - The learning rate used to update parameters.
- Can be a float value or a Variable with one float value as data element.
- momentum (float) - Momentum factor.
- regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
- """
- def __init__(self,
- learning_rate,
- momentum,
- weight_decay=None,
- grad_clip=None,
- **args):
- super(Momentum, self).__init__()
- self.learning_rate = learning_rate
- self.momentum = momentum
- self.weight_decay = weight_decay
- self.grad_clip = grad_clip
- def __call__(self, parameters):
- opt = optim.Momentum(
- learning_rate=self.learning_rate,
- momentum=self.momentum,
- weight_decay=self.weight_decay,
- grad_clip=self.grad_clip,
- parameters=parameters)
- return opt
- class Adam(object):
- def __init__(self,
- learning_rate=0.001,
- beta1=0.9,
- beta2=0.999,
- epsilon=1e-08,
- parameter_list=None,
- weight_decay=None,
- grad_clip=None,
- name=None,
- lazy_mode=False,
- **kwargs):
- self.learning_rate = learning_rate
- self.beta1 = beta1
- self.beta2 = beta2
- self.epsilon = epsilon
- self.parameter_list = parameter_list
- self.learning_rate = learning_rate
- self.weight_decay = weight_decay
- self.grad_clip = grad_clip
- self.name = name
- self.lazy_mode = lazy_mode
- def __call__(self, parameters):
- opt = optim.Adam(
- learning_rate=self.learning_rate,
- beta1=self.beta1,
- beta2=self.beta2,
- epsilon=self.epsilon,
- weight_decay=self.weight_decay,
- grad_clip=self.grad_clip,
- name=self.name,
- lazy_mode=self.lazy_mode,
- parameters=parameters)
- return opt
- class RMSProp(object):
- """
- Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
- Args:
- learning_rate (float|Variable) - The learning rate used to update parameters.
- Can be a float value or a Variable with one float value as data element.
- momentum (float) - Momentum factor.
- rho (float) - rho value in equation.
- epsilon (float) - avoid division by zero, default is 1e-6.
- regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
- """
- def __init__(self,
- learning_rate,
- momentum=0.0,
- rho=0.95,
- epsilon=1e-6,
- weight_decay=None,
- grad_clip=None,
- **args):
- super(RMSProp, self).__init__()
- self.learning_rate = learning_rate
- self.momentum = momentum
- self.rho = rho
- self.epsilon = epsilon
- self.weight_decay = weight_decay
- self.grad_clip = grad_clip
- def __call__(self, parameters):
- opt = optim.RMSProp(
- learning_rate=self.learning_rate,
- momentum=self.momentum,
- rho=self.rho,
- epsilon=self.epsilon,
- weight_decay=self.weight_decay,
- grad_clip=self.grad_clip,
- parameters=parameters)
- return opt
|