1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- from ppocr.data import build_dataloader
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.metrics import build_metric
- from ppocr.utils.save_load import init_model
- from ppocr.utils.utility import print_dict
- import tools.program as program
- def main():
- global_config = config['Global']
- # build dataloader
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- # for rec algorithm
- if hasattr(post_process_class, 'character'):
- config['Architecture']["Head"]['out_channels'] = len(
- getattr(post_process_class, 'character'))
- model = build_model(config['Architecture'])
- use_srn = config['Architecture']['algorithm'] == "SRN"
- best_model_dict = init_model(config, model, logger)
- if len(best_model_dict):
- logger.info('metric in ckpt ***************')
- for k, v in best_model_dict.items():
- logger.info('{}:{}'.format(k, v))
- # build metric
- eval_class = build_metric(config['Metric'])
- # start eval
- metirc = program.eval(model, valid_dataloader, post_process_class,
- eval_class, use_srn)
- logger.info('metric eval ***************')
- for k, v in metirc.items():
- logger.info('{}:{}'.format(k, v))
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|