This chapter introduces the C++ deployment method of the PaddleOCR model, and the corresponding python predictive deployment method refers to document. C++ is better than python in terms of performance calculation. Therefore, in most CPU and GPU deployment scenarios, C++ deployment is mostly used. This section will introduce how to configure the C++ environment and complete it in the Linux\Windows (CPU\GPU) environment PaddleOCR model deployment.
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
Finally, you can see the folder of opencv-3.4.7/
in the current directory.
root_path
) and installation path (install_path
) should be set by yourself. Enter the opencv source code path and compile it in the following way.root_path=your_opencv_root_path
install_path=${root_path}/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
Among them, root_path
is the downloaded opencv source code path, and install_path
is the installation path of opencv. After make install
is completed, the opencv header file and library file will be generated in this folder for later OCR source code compilation.
The final file structure under the opencv installation path is as follows.
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
git clone https://github.com/PaddlePaddle/Paddle.git
rm -rf build
mkdir build
cd build
cmake .. \
-DWITH_CONTRIB=OFF \
-DWITH_MKL=ON \
-DWITH_MKLDNN=ON \
-DWITH_TESTING=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_INFERENCE_API_TEST=OFF \
-DON_INFER=ON \
-DWITH_PYTHON=ON
make -j
make inference_lib_dist
For more compilation parameter options, please refer to the official website of the Paddle C++ inference library:https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html.
build/paddle_inference_install_dir/
.build/paddle_inference_install_dir/
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
Among them, paddle
is the Paddle library required for C++ prediction later, and version.txt
contains the version information of the current inference library.
Different cuda versions of the Linux inference library (based on GCC 4.8.2) are provided on the Paddle inference library official website. You can view and select the appropriate version of the inference library on the official website.
After downloading, use the following method to uncompress.
tar -xf paddle_inference.tgz
Finally you can see the following files in the folder of paddle_inference/
.
inference
directory, the directory structure is as follows.inference/
|-- det_db
| |--inference.pdparams
| |--inference.pdimodel
|-- rec_rcnn
| |--inference.pdparams
| |--inference.pdparams
sh tools/build.sh
Specifically, the content in tools/build.sh
is as follows.
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=ocr_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
OPENCV_DIR
is the opencv installation path; LIB_DIR
is the download (paddle_inference
folder)
or the generated Paddle inference library path (build/paddle_inference_install_dir
folder);
CUDA_LIB_DIR
is the cuda library file path, in docker; it is /usr/local/cuda/lib64
; CUDNN_LIB_DIR
is the cudnn library file path, in docker it is /usr/lib/x86_64-linux-gnu/
.
ocr_system
will be generated in the build
folder.sh tools/run.sh
use_angle_cls
in the file tools/config.txt
as 1 to enable the function.tools/config.txt
are as follows.use_gpu 0 # Whether to use GPU, 0 means not to use, 1 means to use
gpu_id 0 # GPU id when use_gpu is 1
gpu_mem 4000 # GPU memory requested
cpu_math_library_num_threads 10 # Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed
use_mkldnn 1 # Whether to use mkdlnn library
max_side_len 960 # Limit the maximum image height and width to 960
det_db_thresh 0.3 # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
det_model_dir ./inference/det_db # Address of detection inference model
# cls config
use_angle_cls 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
cls_model_dir ./inference/cls # Address of direction classifier inference model
cls_thresh 0.9 # Score threshold of the direction classifier
# rec config
rec_model_dir ./inference/rec_crnn # Address of recognition inference model
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt # dictionary file
# show the detection results
visualize 1 # Whether to visualize the results,when it is set as 1, The prediction result will be save in the image file `./ocr_vis.png`.
The detection results will be shown on the screen, which is as follows.