123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- from .det_basic_loss import DiceLoss
- import numpy as np
- class SASTLoss(nn.Layer):
- """
- """
- def __init__(self, eps=1e-6, **kwargs):
- super(SASTLoss, self).__init__()
- self.dice_loss = DiceLoss(eps=eps)
- def forward(self, predicts, labels):
- """
- tcl_pos: N x 128 x 3
- tcl_mask: N x 128 x 1
- tcl_label: N x X list or LoDTensor
- """
- f_score = predicts['f_score']
- f_border = predicts['f_border']
- f_tvo = predicts['f_tvo']
- f_tco = predicts['f_tco']
- l_score, l_border, l_mask, l_tvo, l_tco = labels[1:]
- #score_loss
- intersection = paddle.sum(f_score * l_score * l_mask)
- union = paddle.sum(f_score * l_mask) + paddle.sum(l_score * l_mask)
- score_loss = 1.0 - 2 * intersection / (union + 1e-5)
- #border loss
- l_border_split, l_border_norm = paddle.split(
- l_border, num_or_sections=[4, 1], axis=1)
- f_border_split = f_border
- border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
- l_border_norm_split = paddle.expand(
- x=l_border_norm, shape=border_ex_shape)
- l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
- l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
- border_diff = l_border_split - f_border_split
- abs_border_diff = paddle.abs(border_diff)
- border_sign = abs_border_diff < 1.0
- border_sign = paddle.cast(border_sign, dtype='float32')
- border_sign.stop_gradient = True
- border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
- (abs_border_diff - 0.5) * (1.0 - border_sign)
- border_out_loss = l_border_norm_split * border_in_loss
- border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
- (paddle.sum(l_border_score * l_border_mask) + 1e-5)
- #tvo_loss
- l_tvo_split, l_tvo_norm = paddle.split(
- l_tvo, num_or_sections=[8, 1], axis=1)
- f_tvo_split = f_tvo
- tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
- l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
- l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
- l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
- #
- tvo_geo_diff = l_tvo_split - f_tvo_split
- abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
- tvo_sign = abs_tvo_geo_diff < 1.0
- tvo_sign = paddle.cast(tvo_sign, dtype='float32')
- tvo_sign.stop_gradient = True
- tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \
- (abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign)
- tvo_out_loss = l_tvo_norm_split * tvo_in_loss
- tvo_loss = paddle.sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \
- (paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
- #tco_loss
- l_tco_split, l_tco_norm = paddle.split(
- l_tco, num_or_sections=[2, 1], axis=1)
- f_tco_split = f_tco
- tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
- l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
- l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
- l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
- tco_geo_diff = l_tco_split - f_tco_split
- abs_tco_geo_diff = paddle.abs(tco_geo_diff)
- tco_sign = abs_tco_geo_diff < 1.0
- tco_sign = paddle.cast(tco_sign, dtype='float32')
- tco_sign.stop_gradient = True
- tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \
- (abs_tco_geo_diff - 0.5) * (1.0 - tco_sign)
- tco_out_loss = l_tco_norm_split * tco_in_loss
- tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
- (paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
- # total loss
- tvo_lw, tco_lw = 1.5, 1.5
- score_lw, border_lw = 1.0, 1.0
- total_loss = score_loss * score_lw + border_loss * border_lw + \
- tvo_loss * tvo_lw + tco_loss * tco_lw
- losses = {'loss':total_loss, "score_loss":score_loss,\
- "border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
- return losses
|