12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn, ParamAttr
- import paddle.nn.functional as F
- class ClsHead(nn.Layer):
- """
- Class orientation
- Args:
- params(dict): super parameters for build Class network
- """
- def __init__(self, in_channels, class_dim, **kwargs):
- super(ClsHead, self).__init__()
- self.pool = nn.AdaptiveAvgPool2D(1)
- stdv = 1.0 / math.sqrt(in_channels * 1.0)
- self.fc = nn.Linear(
- in_channels,
- class_dim,
- weight_attr=ParamAttr(
- name="fc_0.w_0",
- initializer=nn.initializer.Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(name="fc_0.b_0"), )
- def forward(self, x):
- x = self.pool(x)
- x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
- x = self.fc(x)
- if not self.training:
- x = F.softmax(x, axis=1)
- return x
|