123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- def get_bias_attr(k, name):
- stdv = 1.0 / math.sqrt(k * 1.0)
- initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
- bias_attr = ParamAttr(initializer=initializer, name=name + "_b_attr")
- return bias_attr
- class Head(nn.Layer):
- def __init__(self, in_channels, name_list):
- super(Head, self).__init__()
- self.conv1 = nn.Conv2D(
- in_channels=in_channels,
- out_channels=in_channels // 4,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(name=name_list[0] + '.w_0'),
- bias_attr=False)
- self.conv_bn1 = nn.BatchNorm(
- num_channels=in_channels // 4,
- param_attr=ParamAttr(
- name=name_list[1] + '.w_0',
- initializer=paddle.nn.initializer.Constant(value=1.0)),
- bias_attr=ParamAttr(
- name=name_list[1] + '.b_0',
- initializer=paddle.nn.initializer.Constant(value=1e-4)),
- moving_mean_name=name_list[1] + '.w_1',
- moving_variance_name=name_list[1] + '.w_2',
- act='relu')
- self.conv2 = nn.Conv2DTranspose(
- in_channels=in_channels // 4,
- out_channels=in_channels // 4,
- kernel_size=2,
- stride=2,
- weight_attr=ParamAttr(
- name=name_list[2] + '.w_0',
- initializer=paddle.nn.initializer.KaimingUniform()),
- bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv2"))
- self.conv_bn2 = nn.BatchNorm(
- num_channels=in_channels // 4,
- param_attr=ParamAttr(
- name=name_list[3] + '.w_0',
- initializer=paddle.nn.initializer.Constant(value=1.0)),
- bias_attr=ParamAttr(
- name=name_list[3] + '.b_0',
- initializer=paddle.nn.initializer.Constant(value=1e-4)),
- moving_mean_name=name_list[3] + '.w_1',
- moving_variance_name=name_list[3] + '.w_2',
- act="relu")
- self.conv3 = nn.Conv2DTranspose(
- in_channels=in_channels // 4,
- out_channels=1,
- kernel_size=2,
- stride=2,
- weight_attr=ParamAttr(
- name=name_list[4] + '.w_0',
- initializer=paddle.nn.initializer.KaimingUniform()),
- bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv3"),
- )
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv_bn1(x)
- x = self.conv2(x)
- x = self.conv_bn2(x)
- x = self.conv3(x)
- x = F.sigmoid(x)
- return x
- class DBHead(nn.Layer):
- """
- Differentiable Binarization (DB) for text detection:
- see https://arxiv.org/abs/1911.08947
- args:
- params(dict): super parameters for build DB network
- """
- def __init__(self, in_channels, k=50, **kwargs):
- super(DBHead, self).__init__()
- self.k = k
- binarize_name_list = [
- 'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48',
- 'conv2d_transpose_1', 'binarize'
- ]
- thresh_name_list = [
- 'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50',
- 'conv2d_transpose_3', 'thresh'
- ]
- self.binarize = Head(in_channels, binarize_name_list)
- self.thresh = Head(in_channels, thresh_name_list)
- def step_function(self, x, y):
- return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
- def forward(self, x):
- shrink_maps = self.binarize(x)
- if not self.training:
- return {'maps': shrink_maps}
- threshold_maps = self.thresh(x)
- binary_maps = self.step_function(shrink_maps, threshold_maps)
- y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
- return {'maps': y}
|