123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn, ParamAttr
- from paddle.nn import functional as F
- import paddle.fluid as fluid
- import numpy as np
- from .self_attention import WrapEncoderForFeature
- from .self_attention import WrapEncoder
- from paddle.static import Program
- from ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
- import paddle.fluid.framework as framework
- from collections import OrderedDict
- gradient_clip = 10
- class PVAM(nn.Layer):
- def __init__(self, in_channels, char_num, max_text_length, num_heads,
- num_encoder_tus, hidden_dims):
- super(PVAM, self).__init__()
- self.char_num = char_num
- self.max_length = max_text_length
- self.num_heads = num_heads
- self.num_encoder_TUs = num_encoder_tus
- self.hidden_dims = hidden_dims
- # Transformer encoder
- t = 256
- c = 512
- self.wrap_encoder_for_feature = WrapEncoderForFeature(
- src_vocab_size=1,
- max_length=t,
- n_layer=self.num_encoder_TUs,
- n_head=self.num_heads,
- d_key=int(self.hidden_dims / self.num_heads),
- d_value=int(self.hidden_dims / self.num_heads),
- d_model=self.hidden_dims,
- d_inner_hid=self.hidden_dims,
- prepostprocess_dropout=0.1,
- attention_dropout=0.1,
- relu_dropout=0.1,
- preprocess_cmd="n",
- postprocess_cmd="da",
- weight_sharing=True)
- # PVAM
- self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
- self.fc0 = paddle.nn.Linear(
- in_features=in_channels,
- out_features=in_channels, )
- self.emb = paddle.nn.Embedding(
- num_embeddings=self.max_length, embedding_dim=in_channels)
- self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
- self.fc1 = paddle.nn.Linear(
- in_features=in_channels, out_features=1, bias_attr=False)
- def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
- b, c, h, w = inputs.shape
- conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
- conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
- # transformer encoder
- b, t, c = conv_features.shape
- enc_inputs = [conv_features, encoder_word_pos, None]
- word_features = self.wrap_encoder_for_feature(enc_inputs)
- # pvam
- b, t, c = word_features.shape
- word_features = self.fc0(word_features)
- word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
- word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
- word_pos_feature = self.emb(gsrm_word_pos)
- word_pos_feature_ = paddle.reshape(word_pos_feature,
- [-1, self.max_length, 1, c])
- word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
- y = word_pos_feature_ + word_features_
- y = F.tanh(y)
- attention_weight = self.fc1(y)
- attention_weight = paddle.reshape(
- attention_weight, shape=[-1, self.max_length, t])
- attention_weight = F.softmax(attention_weight, axis=-1)
- pvam_features = paddle.matmul(attention_weight,
- word_features) #[b, max_length, c]
- return pvam_features
- class GSRM(nn.Layer):
- def __init__(self, in_channels, char_num, max_text_length, num_heads,
- num_encoder_tus, num_decoder_tus, hidden_dims):
- super(GSRM, self).__init__()
- self.char_num = char_num
- self.max_length = max_text_length
- self.num_heads = num_heads
- self.num_encoder_TUs = num_encoder_tus
- self.num_decoder_TUs = num_decoder_tus
- self.hidden_dims = hidden_dims
- self.fc0 = paddle.nn.Linear(
- in_features=in_channels, out_features=self.char_num)
- self.wrap_encoder0 = WrapEncoder(
- src_vocab_size=self.char_num + 1,
- max_length=self.max_length,
- n_layer=self.num_decoder_TUs,
- n_head=self.num_heads,
- d_key=int(self.hidden_dims / self.num_heads),
- d_value=int(self.hidden_dims / self.num_heads),
- d_model=self.hidden_dims,
- d_inner_hid=self.hidden_dims,
- prepostprocess_dropout=0.1,
- attention_dropout=0.1,
- relu_dropout=0.1,
- preprocess_cmd="n",
- postprocess_cmd="da",
- weight_sharing=True)
- self.wrap_encoder1 = WrapEncoder(
- src_vocab_size=self.char_num + 1,
- max_length=self.max_length,
- n_layer=self.num_decoder_TUs,
- n_head=self.num_heads,
- d_key=int(self.hidden_dims / self.num_heads),
- d_value=int(self.hidden_dims / self.num_heads),
- d_model=self.hidden_dims,
- d_inner_hid=self.hidden_dims,
- prepostprocess_dropout=0.1,
- attention_dropout=0.1,
- relu_dropout=0.1,
- preprocess_cmd="n",
- postprocess_cmd="da",
- weight_sharing=True)
- self.mul = lambda x: paddle.matmul(x=x,
- y=self.wrap_encoder0.prepare_decoder.emb0.weight,
- transpose_y=True)
- def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2):
- # ===== GSRM Visual-to-semantic embedding block =====
- b, t, c = inputs.shape
- pvam_features = paddle.reshape(inputs, [-1, c])
- word_out = self.fc0(pvam_features)
- word_ids = paddle.argmax(F.softmax(word_out), axis=1)
- word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
- #===== GSRM Semantic reasoning block =====
- """
- This module is achieved through bi-transformers,
- ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
- """
- pad_idx = self.char_num
- word1 = paddle.cast(word_ids, "float32")
- word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
- word1 = paddle.cast(word1, "int64")
- word1 = word1[:, :-1, :]
- word2 = word_ids
- enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
- enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
- gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
- gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
- gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
- value=0.,
- data_format="NLC")
- gsrm_feature2 = gsrm_feature2[:, 1:, ]
- gsrm_features = gsrm_feature1 + gsrm_feature2
- gsrm_out = self.mul(gsrm_features)
- b, t, c = gsrm_out.shape
- gsrm_out = paddle.reshape(gsrm_out, [-1, c])
- return gsrm_features, word_out, gsrm_out
- class VSFD(nn.Layer):
- def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
- super(VSFD, self).__init__()
- self.char_num = char_num
- self.fc0 = paddle.nn.Linear(
- in_features=in_channels * 2, out_features=pvam_ch)
- self.fc1 = paddle.nn.Linear(
- in_features=pvam_ch, out_features=self.char_num)
- def forward(self, pvam_feature, gsrm_feature):
- b, t, c1 = pvam_feature.shape
- b, t, c2 = gsrm_feature.shape
- combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
- img_comb_feature_ = paddle.reshape(
- combine_feature_, shape=[-1, c1 + c2])
- img_comb_feature_map = self.fc0(img_comb_feature_)
- img_comb_feature_map = F.sigmoid(img_comb_feature_map)
- img_comb_feature_map = paddle.reshape(
- img_comb_feature_map, shape=[-1, t, c1])
- combine_feature = img_comb_feature_map * pvam_feature + (
- 1.0 - img_comb_feature_map) * gsrm_feature
- img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
- out = self.fc1(img_comb_feature)
- return out
- class SRNHead(nn.Layer):
- def __init__(self, in_channels, out_channels, max_text_length, num_heads,
- num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
- super(SRNHead, self).__init__()
- self.char_num = out_channels
- self.max_length = max_text_length
- self.num_heads = num_heads
- self.num_encoder_TUs = num_encoder_TUs
- self.num_decoder_TUs = num_decoder_TUs
- self.hidden_dims = hidden_dims
- self.pvam = PVAM(
- in_channels=in_channels,
- char_num=self.char_num,
- max_text_length=self.max_length,
- num_heads=self.num_heads,
- num_encoder_tus=self.num_encoder_TUs,
- hidden_dims=self.hidden_dims)
- self.gsrm = GSRM(
- in_channels=in_channels,
- char_num=self.char_num,
- max_text_length=self.max_length,
- num_heads=self.num_heads,
- num_encoder_tus=self.num_encoder_TUs,
- num_decoder_tus=self.num_decoder_TUs,
- hidden_dims=self.hidden_dims)
- self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)
- self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
- def forward(self, inputs, others):
- encoder_word_pos = others[0]
- gsrm_word_pos = others[1]
- gsrm_slf_attn_bias1 = others[2]
- gsrm_slf_attn_bias2 = others[3]
- pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
- gsrm_feature, word_out, gsrm_out = self.gsrm(
- pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2)
- final_out = self.vsfd(pvam_feature, gsrm_feature)
- if not self.training:
- final_out = F.softmax(final_out, axis=1)
- _, decoded_out = paddle.topk(final_out, k=1)
- predicts = OrderedDict([
- ('predict', final_out),
- ('pvam_feature', pvam_feature),
- ('decoded_out', decoded_out),
- ('word_out', word_out),
- ('gsrm_out', gsrm_out),
- ])
- return predicts
|