123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import os
- from paddle.io import Dataset
- import lmdb
- import cv2
- from .imaug import transform, create_operators
- class LMDBDataSet(Dataset):
- def __init__(self, config, mode, logger, seed=None):
- super(LMDBDataSet, self).__init__()
- global_config = config['Global']
- dataset_config = config[mode]['dataset']
- loader_config = config[mode]['loader']
- batch_size = loader_config['batch_size_per_card']
- data_dir = dataset_config['data_dir']
- self.do_shuffle = loader_config['shuffle']
- self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
- logger.info("Initialize indexs of datasets:%s" % data_dir)
- self.data_idx_order_list = self.dataset_traversal()
- if self.do_shuffle:
- np.random.shuffle(self.data_idx_order_list)
- self.ops = create_operators(dataset_config['transforms'], global_config)
- def load_hierarchical_lmdb_dataset(self, data_dir):
- lmdb_sets = {}
- dataset_idx = 0
- for dirpath, dirnames, filenames in os.walk(data_dir + '/'):
- if not dirnames:
- env = lmdb.open(
- dirpath,
- max_readers=32,
- readonly=True,
- lock=False,
- readahead=False,
- meminit=False)
- txn = env.begin(write=False)
- num_samples = int(txn.get('num-samples'.encode()))
- lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
- "txn":txn, "num_samples":num_samples}
- dataset_idx += 1
- return lmdb_sets
- def dataset_traversal(self):
- lmdb_num = len(self.lmdb_sets)
- total_sample_num = 0
- for lno in range(lmdb_num):
- total_sample_num += self.lmdb_sets[lno]['num_samples']
- data_idx_order_list = np.zeros((total_sample_num, 2))
- beg_idx = 0
- for lno in range(lmdb_num):
- tmp_sample_num = self.lmdb_sets[lno]['num_samples']
- end_idx = beg_idx + tmp_sample_num
- data_idx_order_list[beg_idx:end_idx, 0] = lno
- data_idx_order_list[beg_idx:end_idx, 1] \
- = list(range(tmp_sample_num))
- data_idx_order_list[beg_idx:end_idx, 1] += 1
- beg_idx = beg_idx + tmp_sample_num
- return data_idx_order_list
- def get_img_data(self, value):
- """get_img_data"""
- if not value:
- return None
- imgdata = np.frombuffer(value, dtype='uint8')
- if imgdata is None:
- return None
- imgori = cv2.imdecode(imgdata, 1)
- if imgori is None:
- return None
- return imgori
- def get_lmdb_sample_info(self, txn, index):
- label_key = 'label-%09d'.encode() % index
- label = txn.get(label_key)
- if label is None:
- return None
- label = label.decode('utf-8')
- img_key = 'image-%09d'.encode() % index
- imgbuf = txn.get(img_key)
- return imgbuf, label
- def __getitem__(self, idx):
- lmdb_idx, file_idx = self.data_idx_order_list[idx]
- lmdb_idx = int(lmdb_idx)
- file_idx = int(file_idx)
- sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
- file_idx)
- if sample_info is None:
- return self.__getitem__(np.random.randint(self.__len__()))
- img, label = sample_info
- data = {'image': img, 'label': label}
- outs = transform(data, self.ops)
- if outs is None:
- return self.__getitem__(np.random.randint(self.__len__()))
- return outs
- def __len__(self):
- return self.data_idx_order_list.shape[0]
|