123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- groups=1,
- if_act=True,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- self.if_act = if_act
- self.act = act
- self.conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + '_weights'),
- bias_attr=False)
- self.bn = nn.BatchNorm(
- num_channels=out_channels,
- act=act,
- param_attr=ParamAttr(name="bn_" + name + "_scale"),
- bias_attr=ParamAttr(name="bn_" + name + "_offset"),
- moving_mean_name="bn_" + name + "_mean",
- moving_variance_name="bn_" + name + "_variance")
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- return x
- class SAST_Header1(nn.Layer):
- def __init__(self, in_channels, **kwargs):
- super(SAST_Header1, self).__init__()
- out_channels = [64, 64, 128]
- self.score_conv = nn.Sequential(
- ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_score1'),
- ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_score2'),
- ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_score3'),
- ConvBNLayer(out_channels[2], 1, 3, 1, act=None, name='f_score4')
- )
- self.border_conv = nn.Sequential(
- ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_border1'),
- ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_border2'),
- ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_border3'),
- ConvBNLayer(out_channels[2], 4, 3, 1, act=None, name='f_border4')
- )
- def forward(self, x):
- f_score = self.score_conv(x)
- f_score = F.sigmoid(f_score)
- f_border = self.border_conv(x)
- return f_score, f_border
- class SAST_Header2(nn.Layer):
- def __init__(self, in_channels, **kwargs):
- super(SAST_Header2, self).__init__()
- out_channels = [64, 64, 128]
- self.tvo_conv = nn.Sequential(
- ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tvo1'),
- ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tvo2'),
- ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tvo3'),
- ConvBNLayer(out_channels[2], 8, 3, 1, act=None, name='f_tvo4')
- )
- self.tco_conv = nn.Sequential(
- ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tco1'),
- ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tco2'),
- ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tco3'),
- ConvBNLayer(out_channels[2], 2, 3, 1, act=None, name='f_tco4')
- )
- def forward(self, x):
- f_tvo = self.tvo_conv(x)
- f_tco = self.tco_conv(x)
- return f_tvo, f_tco
- class SASTHead(nn.Layer):
- """
- """
- def __init__(self, in_channels, **kwargs):
- super(SASTHead, self).__init__()
- self.head1 = SAST_Header1(in_channels)
- self.head2 = SAST_Header2(in_channels)
- def forward(self, x):
- f_score, f_border = self.head1(x)
- f_tvo, f_tco = self.head2(x)
- predicts = {}
- predicts['f_score'] = f_score
- predicts['f_border'] = f_border
- predicts['f_tvo'] = f_tvo
- predicts['f_tco'] = f_tco
- return predicts
|