123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import string
- import paddle
- from paddle.nn import functional as F
- class BaseRecLabelDecode(object):
- """ Convert between text-label and text-index """
- def __init__(self,
- character_dict_path=None,
- character_type='ch',
- use_space_char=False):
- support_character_type = [
- 'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
- 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
- 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
- 'ne', 'EN'
- ]
- assert character_type in support_character_type, "Only {} are supported now but get {}".format(
- support_character_type, character_type)
- self.beg_str = "sos"
- self.end_str = "eos"
- if character_type == "en":
- self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
- dict_character = list(self.character_str)
- elif character_type == "EN_symbol":
- # same with ASTER setting (use 94 char).
- self.character_str = string.printable[:-6]
- dict_character = list(self.character_str)
- elif character_type in support_character_type:
- self.character_str = ""
- assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
- character_type)
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- self.character_str += line
- if use_space_char:
- self.character_str += " "
- dict_character = list(self.character_str)
- else:
- raise NotImplementedError
- self.character_type = character_type
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- def add_special_char(self, dict_character):
- return dict_character
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """ convert text-index into text-label. """
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- char_list = []
- conf_list = []
- for idx in range(len(text_index[batch_idx])):
- if text_index[batch_idx][idx] in ignored_tokens:
- continue
- if is_remove_duplicate:
- # only for predict
- if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
- batch_idx][idx]:
- continue
- char_list.append(self.character[int(text_index[batch_idx][
- idx])])
- if text_prob is not None:
- conf_list.append(text_prob[batch_idx][idx])
- else:
- conf_list.append(1)
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list)))
- return result_list
- def get_ignored_tokens(self):
- return [0] # for ctc blank
- class CTCLabelDecode(BaseRecLabelDecode):
- """ Convert between text-label and text-index """
- def __init__(self,
- character_dict_path=None,
- character_type='ch',
- use_space_char=False,
- **kwargs):
- super(CTCLabelDecode, self).__init__(character_dict_path,
- character_type, use_space_char)
- def __call__(self, preds, label=None, *args, **kwargs):
- if isinstance(preds, paddle.Tensor):
- preds = preds.numpy()
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
- if label is None:
- return text
- label = self.decode(label)
- return text, label
- def add_special_char(self, dict_character):
- dict_character = ['blank'] + dict_character
- return dict_character
- class AttnLabelDecode(BaseRecLabelDecode):
- """ Convert between text-label and text-index """
- def __init__(self,
- character_dict_path=None,
- character_type='ch',
- use_space_char=False,
- **kwargs):
- super(AttnLabelDecode, self).__init__(character_dict_path,
- character_type, use_space_char)
- def add_special_char(self, dict_character):
- self.beg_str = "sos"
- self.end_str = "eos"
- dict_character = dict_character
- dict_character = [self.beg_str] + dict_character + [self.end_str]
- return dict_character
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """ convert text-index into text-label. """
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- [beg_idx, end_idx] = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- char_list = []
- conf_list = []
- for idx in range(len(text_index[batch_idx])):
- if text_index[batch_idx][idx] in ignored_tokens:
- continue
- if int(text_index[batch_idx][idx]) == int(end_idx):
- break
- if is_remove_duplicate:
- # only for predict
- if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
- batch_idx][idx]:
- continue
- char_list.append(self.character[int(text_index[batch_idx][
- idx])])
- if text_prob is not None:
- conf_list.append(text_prob[batch_idx][idx])
- else:
- conf_list.append(1)
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list)))
- return result_list
- def __call__(self, preds, label=None, *args, **kwargs):
- """
- text = self.decode(text)
- if label is None:
- return text
- else:
- label = self.decode(label, is_remove_duplicate=False)
- return text, label
- """
- if isinstance(preds, paddle.Tensor):
- preds = preds.numpy()
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
- if label is None:
- return text
- label = self.decode(label, is_remove_duplicate=False)
- return text, label
- def get_ignored_tokens(self):
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- return [beg_idx, end_idx]
- def get_beg_end_flag_idx(self, beg_or_end):
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "unsupport type %s in get_beg_end_flag_idx" \
- % beg_or_end
- return idx
- class SRNLabelDecode(BaseRecLabelDecode):
- """ Convert between text-label and text-index """
- def __init__(self,
- character_dict_path=None,
- character_type='en',
- use_space_char=False,
- **kwargs):
- super(SRNLabelDecode, self).__init__(character_dict_path,
- character_type, use_space_char)
- def __call__(self, preds, label=None, *args, **kwargs):
- pred = preds['predict']
- char_num = len(self.character_str) + 2
- if isinstance(pred, paddle.Tensor):
- pred = pred.numpy()
- pred = np.reshape(pred, [-1, char_num])
- preds_idx = np.argmax(pred, axis=1)
- preds_prob = np.max(pred, axis=1)
- preds_idx = np.reshape(preds_idx, [-1, 25])
- preds_prob = np.reshape(preds_prob, [-1, 25])
- text = self.decode(preds_idx, preds_prob)
- if label is None:
- text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
- return text
- label = self.decode(label)
- return text, label
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """ convert text-index into text-label. """
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- char_list = []
- conf_list = []
- for idx in range(len(text_index[batch_idx])):
- if text_index[batch_idx][idx] in ignored_tokens:
- continue
- if is_remove_duplicate:
- # only for predict
- if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
- batch_idx][idx]:
- continue
- char_list.append(self.character[int(text_index[batch_idx][
- idx])])
- if text_prob is not None:
- conf_list.append(text_prob[batch_idx][idx])
- else:
- conf_list.append(1)
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list)))
- return result_list
- def add_special_char(self, dict_character):
- dict_character = dict_character + [self.beg_str, self.end_str]
- return dict_character
- def get_ignored_tokens(self):
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- return [beg_idx, end_idx]
- def get_beg_end_flag_idx(self, beg_or_end):
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "unsupport type %s in get_beg_end_flag_idx" \
- % beg_or_end
- return idx
|