123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import time
- import sys
- import tools.infer.utility as utility
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read_gif
- from ppocr.data import create_operators, transform
- from ppocr.postprocess import build_post_process
- logger = get_logger()
- class TextDetector(object):
- def __init__(self, args):
- self.args = args
- self.det_algorithm = args.det_algorithm
- pre_process_list = [{
- 'DetResizeForTest': None
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image', 'shape']
- }
- }]
- postprocess_params = {}
- if self.det_algorithm == "DB":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- elif self.det_algorithm == "EAST":
- postprocess_params['name'] = 'EASTPostProcess'
- postprocess_params["score_thresh"] = args.det_east_score_thresh
- postprocess_params["cover_thresh"] = args.det_east_cover_thresh
- postprocess_params["nms_thresh"] = args.det_east_nms_thresh
- elif self.det_algorithm == "SAST":
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'resize_long': args.det_limit_side_len
- }
- }
- postprocess_params['name'] = 'SASTPostProcess'
- postprocess_params["score_thresh"] = args.det_sast_score_thresh
- postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
- self.det_sast_polygon = args.det_sast_polygon
- if self.det_sast_polygon:
- postprocess_params["sample_pts_num"] = 6
- postprocess_params["expand_scale"] = 1.2
- postprocess_params["shrink_ratio_of_width"] = 0.2
- else:
- postprocess_params["sample_pts_num"] = 2
- postprocess_params["expand_scale"] = 1.0
- postprocess_params["shrink_ratio_of_width"] = 0.3
- else:
- logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
- sys.exit(0)
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
- args, 'det', logger) # paddle.jit.load(args.det_model_dir)
- # self.predictor.eval()
- def order_points_clockwise(self, pts):
- """
- reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
- # sort the points based on their x-coordinates
- """
- xSorted = pts[np.argsort(pts[:, 0]), :]
- # grab the left-most and right-most points from the sorted
- # x-roodinate points
- leftMost = xSorted[:2, :]
- rightMost = xSorted[2:, :]
- # now, sort the left-most coordinates according to their
- # y-coordinates so we can grab the top-left and bottom-left
- # points, respectively
- leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
- (tl, bl) = leftMost
- rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
- (tr, br) = rightMost
- rect = np.array([tl, tr, br, bl], dtype="float32")
- return rect
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.order_points_clockwise(box)
- box = self.clip_det_res(box, img_height, img_width)
- rect_width = int(np.linalg.norm(box[0] - box[1]))
- rect_height = int(np.linalg.norm(box[0] - box[3]))
- if rect_width <= 3 or rect_height <= 3:
- continue
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def __call__(self, img):
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img, shape_list = data
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- shape_list = np.expand_dims(shape_list, axis=0)
- img = img.copy()
- starttime = time.time()
- self.input_tensor.copy_from_cpu(img)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = {}
- if self.det_algorithm == "EAST":
- preds['f_geo'] = outputs[0]
- preds['f_score'] = outputs[1]
- elif self.det_algorithm == 'SAST':
- preds['f_border'] = outputs[0]
- preds['f_score'] = outputs[1]
- preds['f_tco'] = outputs[2]
- preds['f_tvo'] = outputs[3]
- elif self.det_algorithm == 'DB':
- preds['maps'] = outputs[0]
- else:
- raise NotImplementedError
- post_result = self.postprocess_op(preds, shape_list)
- dt_boxes = post_result[0]['points']
- if self.det_algorithm == "SAST" and self.det_sast_polygon:
- dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
- else:
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
- elapse = time.time() - starttime
- return dt_boxes, elapse
- if __name__ == "__main__":
- args = utility.parse_args()
- image_file_list = get_image_file_list(args.image_dir)
- text_detector = TextDetector(args)
- count = 0
- total_time = 0
- draw_img_save = "./inference_results"
- if not os.path.exists(draw_img_save):
- os.makedirs(draw_img_save)
- for image_file in image_file_list:
- img, flag = check_and_read_gif(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- dt_boxes, elapse = text_detector(img)
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- src_im = utility.draw_text_det_res(dt_boxes, image_file)
- img_name_pure = os.path.split(image_file)[-1]
- img_path = os.path.join(draw_img_save,
- "det_res_{}".format(img_name_pure))
- cv2.imwrite(img_path, src_im)
- logger.info("The visualized image saved in {}".format(img_path))
- if count > 1:
- logger.info("Avg Time: {}".format(total_time / (count - 1)))
|