123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import math
- import time
- import traceback
- import paddle
- import tools.infer.utility as utility
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read_gif
- logger = get_logger()
- class TextRecognizer(object):
- def __init__(self, args):
- self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
- self.character_type = args.rec_char_type
- self.rec_batch_num = args.rec_batch_num
- self.rec_algorithm = args.rec_algorithm
- postprocess_params = {
- 'name': 'CTCLabelDecode',
- "character_type": args.rec_char_type,
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- if self.rec_algorithm == "SRN":
- postprocess_params = {
- 'name': 'SRNLabelDecode',
- "character_type": args.rec_char_type,
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "RARE":
- postprocess_params = {
- 'name': 'AttnLabelDecode',
- "character_type": args.rec_char_type,
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors = \
- utility.create_predictor(args, 'rec', logger)
- def resize_norm_img(self, img, max_wh_ratio):
- imgC, imgH, imgW = self.rec_image_shape
- assert imgC == img.shape[2]
- if self.character_type == "ch":
- imgW = int((32 * max_wh_ratio))
- h, w = img.shape[:2]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def resize_norm_img_srn(self, img, image_shape):
- imgC, imgH, imgW = image_shape
- img_black = np.zeros((imgH, imgW))
- im_hei = img.shape[0]
- im_wid = img.shape[1]
- if im_wid <= im_hei * 1:
- img_new = cv2.resize(img, (imgH * 1, imgH))
- elif im_wid <= im_hei * 2:
- img_new = cv2.resize(img, (imgH * 2, imgH))
- elif im_wid <= im_hei * 3:
- img_new = cv2.resize(img, (imgH * 3, imgH))
- else:
- img_new = cv2.resize(img, (imgW, imgH))
- img_np = np.asarray(img_new)
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
- img_black[:, 0:img_np.shape[1]] = img_np
- img_black = img_black[:, :, np.newaxis]
- row, col, c = img_black.shape
- c = 1
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
- def srn_other_inputs(self, image_shape, num_heads, max_text_length):
- imgC, imgH, imgW = image_shape
- feature_dim = int((imgH / 8) * (imgW / 8))
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
- (feature_dim, 1)).astype('int64')
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
- (max_text_length, 1)).astype('int64')
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
- [-1, 1, max_text_length, max_text_length])
- gsrm_slf_attn_bias1 = np.tile(
- gsrm_slf_attn_bias1,
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
- [-1, 1, max_text_length, max_text_length])
- gsrm_slf_attn_bias2 = np.tile(
- gsrm_slf_attn_bias2,
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
- encoder_word_pos = encoder_word_pos[np.newaxis, :]
- gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
- return [
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2
- ]
- def process_image_srn(self, img, image_shape, num_heads, max_text_length):
- norm_img = self.resize_norm_img_srn(img, image_shape)
- norm_img = norm_img[np.newaxis, :]
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
- self.srn_other_inputs(image_shape, num_heads, max_text_length)
- gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
- gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
- encoder_word_pos = encoder_word_pos.astype(np.int64)
- gsrm_word_pos = gsrm_word_pos.astype(np.int64)
- return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2)
- def __call__(self, img_list):
- img_num = len(img_list)
- # Calculate the aspect ratio of all text bars
- width_list = []
- for img in img_list:
- width_list.append(img.shape[1] / float(img.shape[0]))
- # Sorting can speed up the recognition process
- indices = np.argsort(np.array(width_list))
- # rec_res = []
- rec_res = [['', 0.0]] * img_num
- batch_num = self.rec_batch_num
- elapse = 0
- for beg_img_no in range(0, img_num, batch_num):
- end_img_no = min(img_num, beg_img_no + batch_num)
- norm_img_batch = []
- max_wh_ratio = 0
- for ino in range(beg_img_no, end_img_no):
- # h, w = img_list[ino].shape[0:2]
- h, w = img_list[indices[ino]].shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- for ino in range(beg_img_no, end_img_no):
- if self.rec_algorithm != "SRN":
- norm_img = self.resize_norm_img(img_list[indices[ino]],
- max_wh_ratio)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- else:
- norm_img = self.process_image_srn(
- img_list[indices[ino]], self.rec_image_shape, 8, 25)
- encoder_word_pos_list = []
- gsrm_word_pos_list = []
- gsrm_slf_attn_bias1_list = []
- gsrm_slf_attn_bias2_list = []
- encoder_word_pos_list.append(norm_img[1])
- gsrm_word_pos_list.append(norm_img[2])
- gsrm_slf_attn_bias1_list.append(norm_img[3])
- gsrm_slf_attn_bias2_list.append(norm_img[4])
- norm_img_batch.append(norm_img[0])
- norm_img_batch = np.concatenate(norm_img_batch)
- norm_img_batch = norm_img_batch.copy()
- if self.rec_algorithm == "SRN":
- starttime = time.time()
- encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
- gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
- gsrm_slf_attn_bias1_list = np.concatenate(
- gsrm_slf_attn_bias1_list)
- gsrm_slf_attn_bias2_list = np.concatenate(
- gsrm_slf_attn_bias2_list)
- inputs = [
- norm_img_batch,
- encoder_word_pos_list,
- gsrm_word_pos_list,
- gsrm_slf_attn_bias1_list,
- gsrm_slf_attn_bias2_list,
- ]
- input_names = self.predictor.get_input_names()
- for i in range(len(input_names)):
- input_tensor = self.predictor.get_input_handle(input_names[
- i])
- input_tensor.copy_from_cpu(inputs[i])
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = {"predict": outputs[2]}
- else:
- starttime = time.time()
- self.input_tensor.copy_from_cpu(norm_img_batch)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = outputs[0]
- rec_result = self.postprocess_op(preds)
- for rno in range(len(rec_result)):
- rec_res[indices[beg_img_no + rno]] = rec_result[rno]
- elapse += time.time() - starttime
- return rec_res, elapse
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- text_recognizer = TextRecognizer(args)
- valid_image_file_list = []
- img_list = []
- for image_file in image_file_list:
- img, flag = check_and_read_gif(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- valid_image_file_list.append(image_file)
- img_list.append(img)
- try:
- rec_res, predict_time = text_recognizer(img_list)
- except:
- logger.info(traceback.format_exc())
- logger.info(
- "ERROR!!!! \n"
- "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
- "If your model has tps module: "
- "TPS does not support variable shape.\n"
- "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
- exit()
- for ino in range(len(img_list)):
- logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
- rec_res[ino]))
- logger.info("Total predict time for {} images, cost: {:.3f}".format(
- len(img_list), predict_time))
- if __name__ == "__main__":
- main(utility.parse_args())
|