123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import copy
- import numpy as np
- import time
- from PIL import Image
- import tools.infer.utility as utility
- import tools.infer.predict_rec as predict_rec
- import tools.infer.predict_det as predict_det
- import tools.infer.predict_cls as predict_cls
- from ppocr.utils.utility import get_image_file_list, check_and_read_gif
- from ppocr.utils.logging import get_logger
- from tools.infer.utility import draw_ocr_box_txt
- logger = get_logger()
- class TextSystem(object):
- def __init__(self, args):
- self.text_detector = predict_det.TextDetector(args)
- self.text_recognizer = predict_rec.TextRecognizer(args)
- self.use_angle_cls = args.use_angle_cls
- self.drop_score = args.drop_score
- if self.use_angle_cls:
- self.text_classifier = predict_cls.TextClassifier(args)
- def get_rotate_crop_image(self, img, points):
- '''
- img_height, img_width = img.shape[0:2]
- left = int(np.min(points[:, 0]))
- right = int(np.max(points[:, 0]))
- top = int(np.min(points[:, 1]))
- bottom = int(np.max(points[:, 1]))
- img_crop = img[top:bottom, left:right, :].copy()
- points[:, 0] = points[:, 0] - left
- points[:, 1] = points[:, 1] - top
- '''
- img_crop_width = int(
- max(
- np.linalg.norm(points[0] - points[1]),
- np.linalg.norm(points[2] - points[3])))
- img_crop_height = int(
- max(
- np.linalg.norm(points[0] - points[3]),
- np.linalg.norm(points[1] - points[2])))
- pts_std = np.float32([[0, 0], [img_crop_width, 0],
- [img_crop_width, img_crop_height],
- [0, img_crop_height]])
- M = cv2.getPerspectiveTransform(points, pts_std)
- dst_img = cv2.warpPerspective(
- img,
- M, (img_crop_width, img_crop_height),
- borderMode=cv2.BORDER_REPLICATE,
- flags=cv2.INTER_CUBIC)
- dst_img_height, dst_img_width = dst_img.shape[0:2]
- if dst_img_height * 1.0 / dst_img_width >= 1.5:
- dst_img = np.rot90(dst_img)
- return dst_img
- def print_draw_crop_rec_res(self, img_crop_list, rec_res):
- bbox_num = len(img_crop_list)
- for bno in range(bbox_num):
- cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
- logger.info(bno, rec_res[bno])
- def __call__(self, img):
- ori_im = img.copy()
- dt_boxes, elapse = self.text_detector(img)
- logger.info("dt_boxes num : {}, elapse : {}".format(
- len(dt_boxes), elapse))
- if dt_boxes is None:
- return None, None
- img_crop_list = []
- dt_boxes = sorted_boxes(dt_boxes)
- for bno in range(len(dt_boxes)):
- tmp_box = copy.deepcopy(dt_boxes[bno])
- img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
- img_crop_list.append(img_crop)
- if self.use_angle_cls:
- img_crop_list, angle_list, elapse = self.text_classifier(
- img_crop_list)
- logger.info("cls num : {}, elapse : {}".format(
- len(img_crop_list), elapse))
- rec_res, elapse = self.text_recognizer(img_crop_list)
- logger.info("rec_res num : {}, elapse : {}".format(
- len(rec_res), elapse))
- # self.print_draw_crop_rec_res(img_crop_list, rec_res)
- filter_boxes, filter_rec_res = [], []
- for box, rec_reuslt in zip(dt_boxes, rec_res):
- text, score = rec_reuslt
- if score >= self.drop_score:
- filter_boxes.append(box)
- filter_rec_res.append(rec_reuslt)
- return filter_boxes, filter_rec_res
- def sorted_boxes(dt_boxes):
- """
- Sort text boxes in order from top to bottom, left to right
- args:
- dt_boxes(array):detected text boxes with shape [4, 2]
- return:
- sorted boxes(array) with shape [4, 2]
- """
- num_boxes = dt_boxes.shape[0]
- sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
- _boxes = list(sorted_boxes)
- for i in range(num_boxes - 1):
- if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
- (_boxes[i + 1][0][0] < _boxes[i][0][0]):
- tmp = _boxes[i]
- _boxes[i] = _boxes[i + 1]
- _boxes[i + 1] = tmp
- return _boxes
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- text_sys = TextSystem(args)
- is_visualize = True
- font_path = args.vis_font_path
- drop_score = args.drop_score
- for image_file in image_file_list:
- img, flag = check_and_read_gif(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- starttime = time.time()
- dt_boxes, rec_res = text_sys(img)
- elapse = time.time() - starttime
- logger.info("Predict time of %s: %.3fs" % (image_file, elapse))
- for text, score in rec_res:
- logger.info("{}, {:.3f}".format(text, score))
- if is_visualize:
- image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- boxes = dt_boxes
- txts = [rec_res[i][0] for i in range(len(rec_res))]
- scores = [rec_res[i][1] for i in range(len(rec_res))]
- draw_img = draw_ocr_box_txt(
- image,
- boxes,
- txts,
- scores,
- drop_score=drop_score,
- font_path=font_path)
- draw_img_save = "./inference_results/"
- if not os.path.exists(draw_img_save):
- os.makedirs(draw_img_save)
- cv2.imwrite(
- os.path.join(draw_img_save, os.path.basename(image_file)),
- draw_img[:, :, ::-1])
- logger.info("The visualized image saved in {}".format(
- os.path.join(draw_img_save, os.path.basename(image_file))))
- if __name__ == "__main__":
- main(utility.parse_args())
|