123456789101112131415161718192021222324252627282930313233343536 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- class CTCLoss(nn.Layer):
- def __init__(self, **kwargs):
- super(CTCLoss, self).__init__()
- self.loss_func = nn.CTCLoss(blank=0, reduction='none')
- def __call__(self, predicts, batch):
- predicts = predicts.transpose((1, 0, 2))
- N, B, _ = predicts.shape
- preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
- labels = batch[1].astype("int32")
- label_lengths = batch[2].astype('int64')
- loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
- loss = loss.mean()
- return {'loss': loss}
|