123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import ParamAttr, nn
- from paddle.nn import functional as F
- def get_para_bias_attr(l2_decay, k, name):
- regularizer = paddle.regularizer.L2Decay(l2_decay)
- stdv = 1.0 / math.sqrt(k * 1.0)
- initializer = nn.initializer.Uniform(-stdv, stdv)
- weight_attr = ParamAttr(
- regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
- bias_attr = ParamAttr(
- regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
- return [weight_attr, bias_attr]
- class CTCHead(nn.Layer):
- def __init__(self, in_channels, out_channels, fc_decay=0.0004, **kwargs):
- super(CTCHead, self).__init__()
- weight_attr, bias_attr = get_para_bias_attr(
- l2_decay=fc_decay, k=in_channels, name='ctc_fc')
- self.fc = nn.Linear(
- in_channels,
- out_channels,
- weight_attr=weight_attr,
- bias_attr=bias_attr,
- name='ctc_fc')
- self.out_channels = out_channels
- def forward(self, x, labels=None):
- predicts = self.fc(x)
- if not self.training:
- predicts = F.softmax(predicts, axis=2)
- return predicts
|